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This study is the first comprehensive examination of uncertainty with respect to region,
season, rain rate, topography, and snow cover of five mainstream satellite-based
precipitation products over the Tibetan Plateau (TP) for the period 2005–2007. It
further investigates three merging approaches in order to provide the best possible
products for climate and hydrology research studies. Spatial distribution of uncertainty
varies from higher uncertainty in the eastern and southern TP and relatively smaller
uncertainty in the western and northern TP. The uncertainty is highly seasonal,
temporally varying with a decreasing trend from January to April and then remaining
relatively low and increasing after October, with an obvious winter peak and summer
valley. Overall, the uncertainty also shows an exponentially decreasing trend with
higher rainfall rates. The effect of topography on the uncertainty tends to rapidly
increase when elevation exceeds 4000 m, while the impact slowly decreases in areas
lower than that topography. The influence of the elevation on the uncertainty is
significant for all seasons except for the summer. Further cross-investigation found
that the uncertainty trend is highly correlated with the MODIS-derived snow cover
fraction (SCF) time series over the TP (e.g. correlation coefficient ≥0.75). Finally, to
reduce the still relatively large and complex uncertainty over the TP, three data
merging methods are examined to provide the best possible satellite precipitation
data by optimally combining the five products. The three merging methods – arith-
metic mean, inverse-error-square weight, and one-outlier-removed arithmetic mean –
show insignificant yet subtle differences. The Bias and RMSE of the three merging
methods is dependent on the seasons, but the one-outlier-removed method is more
robust and its result outperforms the five individual products in all the seasons except
for the winter. The correlation coefficient of the three merging methods is consistently
higher than any of five individual satellite estimates, indicating the superiority of the
method. This optimally merging multi-algorithm method is a cost-effective way to
provide satellite precipitation data of better quality with less uncertainty over the TP in
the present era prior to the Global Precipitaton Measurement Mission.

1. Introduction

The Tibetan Plateau (TP), known as the Earth’s third pole, is the world’s highest plateau,
averaging over 4000 m above sea level. It has a great influence on regional and even global
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climate change and disastrous weather arising from anomalous thermal and dynamic
processes over it (Luo and Yanai 1984). High-quality precipitation observation is important
for understanding the thermal and dynamic processes over the TP. Precipitation at each grid
box is also required for driving land surface and hydrological models. But, because of its
complex terrain and harsh natural environment, very few gauges and meteorological radars
are installed in the southeast of the TP, and there are no gauges or radar in the vast areas of
the southern and western TP. Fortunately, with the development of remote-sensing technol-
ogy, several satellite-based precipitation retrieval algorithms have been developed, and their
related precipitation products are available now (Joyce et al. 2004; Hong, Hsu, and
Sorooshian 2004; Hsu et al. 1997, 1999; Sorooshian et al. 2000; Turk et al. 2003;
Huffman and Adler 2007; Hsu et al. 2009). However, satellite-based retrieval is an indirect
way to obtain precipitation estimates, and different retrieval algorithms tend to have their
own merits and demerits, quantified by uncertainty measures as a function of space, time,
and rainfall intensity (Ebert, Janowiak, and Kidd 2007; Tian et al. 2007, 2009; Shen, Xiong,
et al. 2010; Yong et al. 2012; Chen et al. 2013). Tian and Peters-Lidard (2010) proposed to
estimate global precipitation uncertainties as a variable of the rain rate at given locations
among many other studies (Adler et al. 2001; Smith et al. 2006; Adler et al. 2009). To the
best of our knowledge, uncertainty over the TP has not yet been fully studied with all
available mesoscale satellite precipitation products. In this study, five mainstream satellite-
based precipitation products are comprehensively examined for the first time over the TP
for the period 2005–2007. The uncertainty is examined and quantified with factors con-
sidering space, season, and rain rate, as Tian and Peters-Lidard (2010) did. On the other
hand, the influence of snow cover change and topographic features on the uncertainty is
also investigated owing to the high elevation of the TP.

Building an ensemble average forecast field by the results from different methods,
different models, or the different forecast members of the same model has been widely
studied and applied in meteorology (Sanders 1963) and hydrology (McLeod et al. 1987).
The advantage of the ensemble average is that it is able to effectively synthesize forecast
information of multiple members in order to obtain higher forecast skill than a single
member. However, Li (2011) reported that the ensemble prediction does not always
provide a more accurate forecast field than a single forecast. In this study, ensemble
prediction is employed to provide the best satellite precipitation data for numerous
research studies and applications over the sparsely gauged TP. Here, three ensemble
methods – arithmetic mean, inverse-error-square weight, and one-outlier-removed arith-
metic mean – are introduced, and results are compared to the five individual satellite data
sources both at seasonal and at annual time scales.

The following sections will first describe the study area, data, and method, followed
by uncertainty analysis, data ensemble investigation, and conclusions.

2. Study area, data, and method

The study area is 25–40° N and 75–105° E, confining the TP region over the 3-year
period of 2005–2007. A dense national gauge network of ~330 gauges has been estab-
lished within the research region as shown in Figure 1. The average distance between
gauges is 78.9 km. If the latitude line of 100° E is used to divide the research area into two
sub-regions, east and west, the gauge number (average gauge-to-gauge distance) for
western and eastern parts is ~110 (133.1 km) and 220 (55.5 km), respectively, indicating
a much denser gauge network in the east and a relatively sparse one in the west. The
gauge observations have gone through three levels of quality control and are then
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accumulated into daily gauge-site precipitation data. These quality-controlled point data
are used to generate the gauge-based precipitation analysis (GPA) at a 0.25° grid box
(Shen, Feng, et al. 2010) using the optimal interpolation method first proposed by Xie
et al. (2007), with additional topographic corrections. In this process, topographic effect is
adjusted by following the method used in PRISM (Parameter-elevation Regressions on
Independent Slopes Model) data analysis (Daly, Neilsen, and Phillips 1994). Figure 2
(a)–(e) shows the spatial distribution of the 3-year mean annual and seasonal precipitation
from GPA. Mean precipitation distribution over the TP is characterized by an east-to-west
decreasing trend. A large amount of precipitation is observed over the eastern and south-
eastern TP, and the temporal distribution has seasonal dependence with a high (low)
amount in warm (cold) seasons.

Five level-3 satellite-based precipitation estimates by blending passive microwave
(PMW) and infrared (IR) sensors are used in this article. They are: (1) global precipitation
fields generated by the National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) morphing technique (CMORPH) (Joyce et al. 2004);
(2) Precipitation Estimation From Remotely Sensed Information Using Artificial Neural
Network (PERSIANN) (Hsu et al. 1997, 1999); (3) the Naval Research Laboratory (NRL)
blended satellite precipitation estimates (Turk et al. 2003); (4) Tropical Rainfall
Measuring Mission (TRMM) precipitation products 3B42 version 7; and (5) its real-
time version 3B42RT (Huffman and Adler 2007). The main differences in the five
products arise from two factors: one is the input satellite sources and the other is the
IR-PMW merging algorithms. The related information about the five satellite products is
included in Table 1.

The method used in this article is the three merging approaches – arithmetic mean,
inverse-error-square weight, and one-outlier-removed arithmetic mean – as follows:

R1 ¼ 1

n

Xn

k¼1

Sk ; (1)

40° N

38° N

36° N

34° N

32° N

30° N

28° N

26° N

75° E 78° E 81° E 84° E 87° E 90° E 93° E 96° E 99° E 102° E 105° E

Figure 1. Gauge distribution over the research area (one red circle represents one gauge, black line
at the position of 100° E is used to divide the research area into two parts, east and west).
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Table 1. Information of five satellite-based precipitation products used in this research.

Product name Provider Input data Retrieval algorithm

Precipitation Estimation
from Remotely Sensed
Information using
Artificial Neural
Networks
(PERSIANN)

UC Irvine
(Hsu K.-L.)

IR : GOES-IR;
PMW: TRMM
2A12

Adaptive artificial
neural network

Naval Research Laboratory
blended algorithm
(NRL)

NRL (Turk J.) IR : Geo-IR; PMW:
SSM/I, TRMM,
AMSU, AMSR

Histogram matching method

TRMM multi-satellite
precipitation analysis
(3B42RT for real time or
3B42 Version 7)

GSFC
(Huffman G.)

IR : Geo-IR PMW:
TMI, SSMI,
SSMIS, AMSR-
E, AMSU-B,
MHS

3B42RT: histogram matching
method

3B42: GPCC monthly gauge
observations to correct the
bias of 3B42RT

CPC morphing technique
(CMORPH)

NOAA CPC
(Joyce B.)

IR : Geo-IR; PMW:
SSMI, AMSU-B,
TMI, AMSR-E

CPC morphing technique:
first, the vector of the
cloud motion is calculated
by the IR data, then the
rainfall from the PMW
exclusively is transported
based on the motion vector

40° N
(a) Annual

(b) Spring (c) Summer

(d) Autumn (e) Winter

35° N

30° N

25° N

40° N

35° N

30° N

25° N

40° N

35° N

30° N

25° N

40° N

35° N

30° N

25° N

40° N

35° N

30° N

25° N

75° E 80° E 85° E 90° E 95° E 100° E 105° E

75° E 80° E 85° E 90° E 95° E 100° E 105° E

75° E 80° E 85° E 90° E 95° E 100° E 105° E 75° E 80° E 85° E 90° E 95° E 100° E 105° E

75° E 80° E 85° E 90° E 95° E 100° E 105° E

30

20

10

5

4

3

2

1

0.5

0.2

0.1

Figure 2. (a–e) The 2005–2007 mean annual and seasonal precipitation distribution from GPA
over the TP (unit: mm day−1).
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R2 ¼ 1

n

Xn

k¼1

Wk � Sk;WK ¼ 1

σ2K
; (2)

R3 ¼ 1

n� 1

Xn�1

k¼1

Sk ; (3)

where, R1 , R2 , and R3 are the precipitation obtained from the arithmetic mean, inverse-
error-square weight, and one-outlier-removed arithmetic mean, respectively. Sk is a
satellite-based precipitation product, n is the number of satellite products examined, and
n ¼ 5 in this article. WK is the weighting factor that is a function of the inverse proportion
to the error square (σ2K ) for each satellite product. All values are calculated both at the
spatial and at the temporal scales. The spatial scale is a 0.25° grid box with at least one
gauge available over the TP and the temporal scale is daily for the period 2005–2007.

Several common statistical indices are used to quantitatively evaluate individual
algorithms and the merged ensemble estimates with GPA including Bias, relative bias
(RBias), root-mean-square error (RMSE), and correlation coefficient (CC). Additionally, a
set of contingency table statistics is used in this study. They are probability of detection
(POD), false-alarm ratio (FAR), critical success index (CSI), and equitable threat score
(ETS) (Ebert, Janowiak, and Kidd 2007). All analyses in this article are done just for grid
boxes with at least one gauge available to ensure statistical significance and less inter-
polated error.

3. Uncertainty analysis

3.1. Spatial distribution

GPA is conventionally used to quantify the uncertainty of satellite products, but its limited
distribution makes it less representative. Satellite products have full spatial coverage, and
so they can be used to examine the uncertainty of the satellite-based precipitation
estimates over the whole region. The standard deviation of five satellite products is
calculated first and uncertainty is defined as the ratio of standard deviation to mean
daily precipitation from five satellite products. Because precipitation with rain rate less
than 0.5 mm day−1 accounts for almost 80% of the total amount of rainfall, especially in
winter, which will lead to unreliable uncertainty, standard deviation is used when plotting
the spatial distribution of uncertainty. The spatial distribution of annual and seasonal
uncertainties over the TP for 2005–2007 is shown in Figures 3(b)–(f). The elevation of the
research domain is also in Figure 3(a). The spatial uncertainty is dependent on seasons.
The maximum uncertainty is more than 5.0 mm day−1 and is always distributed in the
southeastern TP where the elevation changes sharply from 3000 m to more than 5000 m.
In the western and northern TP, uncertainty is relatively small, with values less than
3.0 mm day−1. It indicates that precipitation estimates from different satellite retrieval
algorithms generally have better agreement in the western and northern TP than in the
southeastern TP.

3.2. SCF-dependent seasonal uncertainty

Figure 4 shows the seasonality time series of mean relative uncertainty of satellite
precipitation estimates for 2005–2007. The uncertainty decreases from January to April,

International Journal of Remote Sensing 6847
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then remains relatively low, and increases after October. The uncertainty of satellite
precipitation estimates shows a fluctuation from 136.02% to 319.63%, with a mean
value of 211.99%. Given the current limitation of satellite precipitation sensors in detec-
tion of solid precipitation, we suspect that the uncertainty is probably associated with
snowfall seasonality over the TP. Thus, we further investigated the uncertainty connection
with snow cover fraction (SCF) derived from MODIS daily snow data (MODIS user
guide 2003) in Figure 4, where SCF is defined as the ratio between snow-covered grid
boxes and total grid boxes over the research domain. As shown in Figure 4, SCF
temporally fluctuates between 5.27% and 32.15%, with a mean value of 14.40%. As
anticipated, the time series of SCF shows a very good agreement with the seasonal
uncertainty of satellite precipitation given their relatively high correlation coefficient
(between two time series is 0.75). The warm season from April to September is a period
with relatively low uncertainty and SCF with a mean of 179.23% and 10.04%, respec-
tively. However, the related value for the cold season from October to the following
March is 244.93% and 18.67%, respectively. The higher/lower uncertainty is related to the
relatively high/low SCF. This clearly indicates that the current spaceborne quantitative
precipitation estimation (QPE) is incapable of adequately resolving winter precipitation.
Meanwhile, the recently launched Global Precipitation Measurement Mission, with dual-
frequency precipitation radar and multi-frequency passive microwave channels, holds
promising potential in this regard.

40° N

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

40° N
5000

4000

3000

2000

1000

500

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

5

4

3

2

1

0.5

40° N

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

40° N

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

40° N

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

40° N

35° N

30° N

25° N
75° E 80° E 85° E 90° E 95° E 100° E 105° E

(a) Elevation (b) Annual

(d) Summer(c) Spring

(e) Autumn (f) winter

Figure 3. (a–f) Spatial distribution of uncertainty (unit: mm day−1) for 2005–2007 and the
elevation (unit: m) over the TP.
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3.3. Rain rate-dependent uncertainty

Influence of rainfall rate on the uncertainty was previously investigated by Tian and
Peters-Lidard (2010) among others in different parts of the world except in the TP. In this
study, different rain rate categories are classified based on the mean data of five satellite
products. According to the rain rate, the uncertainty is calculated at each grid box for four
seasons and annual mean (Figure 5). It shows that the uncertainty decreases with the rain
rate. In summer, the uncertainty is 160% with the rain rate category in 0.0–0.5 mm day−1

while the uncertainty is reduced to 40% at the rain rate ≥ 20.0 mm day−1. Moreover, the
uncertainty is seasonally dependent with the smallest in summer and the largest in winter.
For example, when the rain rate has fallen to 5.0–10.0 mm day−1, uncertainty is 73.3%
and 110.2% for summer and winter, respectively.

3.4. Topography-dependent uncertainty

Topography has a great and complex effect on precipitation. Four elevation categories
are classified as (1) elevation < 2000 m; (2) 2000 m ≤ elevation < 3000 m; (3)
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3000 m ≤ elevation < 4000 m; and (4) elevation ≥ 4000 m. The uncertainty is calculated
at each grid box. Then the seasonal and annual uncertainty is averaged according to the
elevation categories (Figure 6). In general, the effect of topography on the uncertainty
tends to gradually decrease when the elevation is less than 4000 m, and uncertainty
increases fast with an elevation larger than 4000 m. The trend is relatively small in
summer but large in winter. Moreover, the seasonal and annual uncertainty of satellite-
based precipitation products is investigated as a function of the different elevation
points. A region encompassed by 28°–35° N and 92°–104° E is selected because of
its dramatic change of elevation and relatively dense network. Based on the gauge
analysis over the grid box, with at least one gauge available, the meridional distribution
from 92° E to 104° E of seasonal and annual uncertainty for five satellite-based
precipitation products is shown in Figure 7 together with the average elevation taking
28°–35° N as the cross-section. The mean elevation is decreased from 5119 m to 988 m,
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Figure 6. The relationship between uncertainty (unit: %) and elevation (unit: m) for annual mean
and four seasons over the TP for 2005–2007.
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and the range of elevation is more than 4000 m when the longitude is changed from 92°
E to 104° E. The uncertainty of five satellite-based precipitation products is dependent
on the elevation points. Taking 94° E and 95° E as the dividing points, the elevation is
decreased at first, then increases, and then decreases gradually. The same feature is
exhibited for the seasonal and annual uncertainty of satellite products, especially for the
winter and autumn seasons. The correlation coefficient between uncertainty for winter
and autumn seasons and the elevation reaches at 0.77 and 0.67, respectively. It is 0.51
for the spring season. The influence of the elevation on the uncertainty is minimum in
summer and the correlation coefficient is only 0.17. The correlation coefficient between
the annual uncertainty and the elevation is still 0.63, indicating the great effect of the
elevation on the annual uncertainty. In addition to the relatively small effect of the
elevation on the uncertainty in summer, the effect of the elevation on the other seasonal
uncertainty is significant, particularly in the winter and autumn.

4. Uncertainty analysis of the merged multi-algorithm data ensembles

Owing to relatively large uncertainty and limited observations over the TP, it is beneficial
to further improve the precipitation quality by captalizing on the strengths of all available
satellite precipitation products. Thus, we evaluate the performance of three ensemble
methods for generating the best possible merged satellite precipitation data. They are
arithmetic mean, inverse-error-square weight, and one-outlier-removed arithmetic mean,
as shown in Section 2.

4.1. Statistical analysis

Tables 2 and 3 summarize the comparison statistics for the five satellite products and the
three ensembles at daily and 0.25° resolution over the TP for summer and winter of 2005–
2007, respectively. Bias of each individual satellite precipitation estimation ranges from
−0.736 mm day−1 to 1.830 mm day−1 and RMSE ranges from 4.492 mm day−1 for
CMORPH to 6.793 mm day−1 for PERSIANN. However, Bias (RMSE) between the
ensembles and GPA are much reduced from −0.475 to 0.208 mm day−1 (4.184 mm day−1

to 4.247 mm day−1), which is better than that between any of five individual satellite
estimates and gauge observations. The ensemble data produced by the inverse-error-
square weight has the best performance with Bias (relative bias) of −0.056 mm day−1

(−1.9%) among all three ensemble products, while the ensemble data produced by the

Table 2. Evaluation results of GPA versus five satellite estimates and three satellite ensembles over
the TP for the summer period of 2005–2007.

Bias RBias RMSE RRMSE CC

CMORPH −0.736 −0.253 4.492 1.546 0.568
PERSIANN 1.830 0.630 6.793 2.338 0.502
NRL 0.713 0.246 6.188 2.130 0.478
TRMM/3B42 −0.252 −0.087 5.337 1.837 0.507
3B42RT 0.324 0.112 5.391 1.855 0.506
Arithmetic mean 0.208 0.072 4.247 1.462 0.634
Inverse-error-square −0.056 0.019 4.228 1.455 0.633
One-outlier-removed −0.475 −0.164 4.184 1.440 0.625

Note: Bold values are the best result obtained for a particular product and for each statistical parameter.
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one-outlier-removed method provides the smallest RMSE (4.184 mm day−1). Correlation
coefficients from the three ensembles ranging from 0.625 to 0.634 are much larger than
the best value from the individual satellite product (0.568 in CMORPH). These results
suggest that quality of assembling different satellite products is further improved by
capitalizing on each individual product with proper ensemble methods, resulting in a
relatively lower bias and RMSE and a higher correlation. For the winter period, Bias from
the one-outlier-removed method presents the smallest value of 0.185 mm day−1 in the
three merging algorithms, but it is still larger than the best value of −0.003 mm day−1

obtained from the TRMM 3B42. The similar characteristic is for the correlation coeffi-
cient changing from 0.184 to 0.197 from the ensembles, but it is lower than the best value
from TRMM 3B42 (0.265). The RMSE obtained from the one-outlier-removed method is
1.733 mm day−1, which is at the same level as the best value from TRMM 3B42
(1.728 mm day−1). The difference of three merging algorithms is increased, and the result
from the one-outlier-removed method is better than other two methods, but it is still worse
than that from TRMM 3B42. For each single satellite precipitation estimate, the bias
shows a relatively large range from only −0.003 mm day−1 for TRMM 3B42 to
1.686 mm day−1 for PERSIANN, with a difference of 1.689 mm day−1. The same
characteristic is for the RMSE changing from 1.728 mm day−1 for TRMM 3B42 to
5.721 mm day−1 for NRL, with a difference of 3.993 mm day−1. Bias and RMSE
among five satellite products is a large varying amplitude and TRMM 3B42 is signifi-
cantly better than other single satellite products in winter, which lead to the failure of the
ensemble data. This result has been proved in the field of the ensemble prediction for
numerical weather models (Li 2011; Yoo and Kang 2005; Jeong and Kim 2009; Winter
and Nychka 2010) and is first confirmed and extended in the field of satellite precipitation
estimates.

When the rainfall threshold is selected as 0.1 mm day−1, values of ETS, CSI, POD,
and FAR for five satellite precipitation estimates and three merged ensembles over the TP
for the summer and winter periods during 2005–2007 are shown in Tables 4 and 5,
respectively. These indices are calculated against GPA grids that contain at least one
gauge. In summer, ETS, CSI, and FAR for five satellite precipitation estimates are very
close, except that POD for five satellite estimates has a large amplitude from 0.73 for
TRMM/3B42 to 0.82 for PERSIANN. CSI and POD for the ensembles are increased
compared with those for five satellite estimates. The highest CSI in five satellite estimates
is 0.67, while that for ensembles is 0.69. It indicates that the ensembles can detect more
rainfall events than individual satellite estimates. FAR for the ensembles in the rainfall

Table 3. Evaluation results of GPA versus five satellite estimates and three satellite ensembles over
the TP for the winter period of 2005–2007.

Bias RBias RMSE RRMSE CC

CMORPH 0.035 0.147 1.840 7.625 0.051
PERSIANN 1.686 6.990 4.228 17.527 0.153
NRL 1.684 6.981 5.721 23.713 0.056
TRMM/3B42 −0.003 −0.014 1.728 7.161 0.265
3B42RT 0.873 3.618 3.414 14.152 0.163
Arithmetic mean 0.767 3.179 2.151 8.916 0.184
Inverse-error-square 0.419 1.738 1.930 7.999 0.196
One-outlier-removed 0.185 0.766 1.733 7.185 0.197

Note: Bold values are the best result obtained for a particular product and for each statistical parameter.
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threshold of 0.1 mm day−1 is a little enhanced compared to that from individual products;
however, further investigation shows that when a higher rainfall threshold such as
5.0 mm day−1 is selected, FAR for the ensembles will be smaller. The merged ensemble
is an effective way to correctly detect more rainfall events and reduce missed and false
events. In winter, however, ETS, CSI, POD, and FAR from the five satellite products
present a relatively large changing amplitude. ETS (TS) changes from 0.03 (0.12) for
CMORPH to 0.14 (0.21) for TRMM 3B42 while POD (FAR) varies from 0.33 (0.84) for
CMORPH to 0.85 (0.69) for PERSIANN (TRMM 3B42). The best value for each of the
four parameters is not consistently obtained from the three merging algorithms, especially
for the ETS and FAR. ETS (FAR) changes from 0.05 (0.78) to 0.1 (0.83) from the three
merging algorithms, and it is still lower (higher) than the best value of 0.14 (0.69) from
the TRMM 3B42. CSI changing from 0.17 to 0.2 by the three merging algorithms is
almost at the same level as the best value in five individual satellite products (0.21 from
TRMM 3B42). The improvement of POD is obvious for the highest value of 0.85 from
PERSIANN to 0.94 from the ensemble of the arithmetic mean.

4.2. Spatial distribution

The spatial distribution of the annual mean uncertainty for the ensemble is shown in
Figure 8 together with the five satellite-based precipitation products in order to examine

Table 4. Values of ETS, CSI, POD, and FAR for five satellite estimates and three satellite
ensembles over the TP for the summer period of 2005–2007.

ETS CSI POD FAR

CMORPH 0.24 0.64 0.79 0.23
PERSIANN 0.28 0.67 0.82 0.22
NRL 0.24 0.65 0.81 0.24
TRMM/3B42 0.24 0.61 0.73 0.21
3B42RT 0.21 0.61 0.75 0.24
Arithmetic mean 0.24 0.69 0.93 0.27
Inverse-error-square 0.27 0.69 0.89 0.25
One-outlier-removed 0.28 0.69 0.87 0.23

Notes: The rainfall threshold is 0.1 mm day−1. Bold values are the best result obtained for a particular product
and for each statistical parameter.

Table 5. Values of ETS, CSI, POD, and FAR for five satellite estimates and three satellite
ensembles over the TP for the winter period of 2005–2007.

ETS CSI POD FAR

CMORPH 0.03 0.12 0.33 0.84
PERSIANN 0.07 0.18 0.85 0.81
NRL 0.05 0.16 0.62 0.83
TRMM/3B42 0.14 0.21 0.39 0.69
3B42RT 0.09 0.19 0.58 0.78
Arithmetic mean 0.05 0.17 0.94 0.83
Inverse-error-square 0.09 0.20 0.82 0.79
One-outlier-removed 0.10 0.20 0.74 0.78

Notes: The rainfall threshold is 0.1 mm day−1. Bold values are the best result obtained for a particular product
and for each statistical parameter.
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which of the satellite products contribute more to the uncertainty. Compared with the
uncertainty of PERSIANN, NRL, and TRMM 3B42RT, uncertainty of TRMM 3B42 and
CMORPH is relatively small, but it is still larger than that of the ensemble over the entire
research. There is no existing gauge in the western part of the TP where uncertainty from
each of five satellite products is more than 3 mm day−1. The ensemble data show a very
small uncertainty with a value of less than 3 mm day−1 after merging the five products. It
indicates that the ensemble has the smallest uncertainty among the five products. The
same feature is depicted at the four seasonal time scales, which are omitted to avoid
redundancy. To further investigate which of the satellite products contributes more to the
uncertainty in a qualitative sense, the number of each satellite product being taken as the
outlier is calculated for 2005–2007, as shown in Table 6. The outlier satellite product has
the largest deviation from the arithmetic mean at each grid box and time. Among the five
satellite products, only TRMM 3B42 uses the gauge data to correct the bias and TRMM
3B42 has the minimum (455,129) number being taken as the outlier in the research
domain and period. The procedure of cloud classification and snow screening is not
considered in the PERSIANN algorithm, which leads to the maximum number
(2,326,270) being taken as the outlier. The result of outlier number for each satellite
product can demonstrate that the PERSIANN product contributes the most to the uncer-
tainty qualitatively, followed by TRMM 3B42RT (1,305,663), NRL (1,295,385),
CMORPH (489,789), and TRMM 3B42 (455,129).
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Figure 8. (a–f) The 2005–2007 annual mean spatial distribution of uncertainty for five satellite
products and the ensemble from the inverse-error-square weight method over the TP.
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CMORPH and TRMM 3B42 products show smaller RMSE and lower number being
taken as the outlier over the spatial scale, so another question arises whether combining
CMORPH with TRMM 3B42 can provide better estimates than the three ensembles
used in the article. Table 7 shows the evaluation results of three ensembles and a
combination of CMORPH and TRMM 3B42 versus the GPA over the grid box, with
at least one gauge available at the seasonal and annual time scales. Bold values are the
best results obtained for a particular season and each statistical parameter. Although the
evaluation results are dependent on the merging methods for a particular season, the
result from the one-outlier-removed arithmetic mean is more stable and reliable. For
example, the statistics index of Bias, RMSE, and CC from the one-outlier-removed
arithmetic mean is consistently the best among the four methods at the annual time
scale. Bias is 0.044 mm day−1, RMSE is 3.096 mm day−1, and CC is 0.597. In summer,
CC from the arithmetic mean (0.634) and Bias from the inverse-error-square weight
(−0.056 mm day−1) are the best but RMSE from the one-outlier-removed arithmetic
mean (4.184 mm day−1) is the smallest. However, the result from combining CMORPH
with TRMM 3B42 has the advantage in the cold seasons of autumn and winter, which
shows the smallest Bias (0.016 mm day−1), RMSE (1.652 mm day−1), and highest
correlation coefficient (0.226) among the four ensemble data, but it is still worse than
the result from TRMM 3B42.

5. Conclusions

In this study, uncertainty of five state-of-the-art satellite-based precipitation estimates has
been comprehensively evaluated for the first time with respect to region, season, eleva-
tion, rain intensity, snow cover, and topography over the TP spanning the period of 2005–
2007 due to the satellite product availability. Also, three merging methods are further
investigated in order to provide one best possible spaceborne precipitation product for
climate and hydrology research. Major conclusions are summarized below.

Table 6. Number of each satellite products being taken as the outlier over the TP for 2005–2007.

CMORPH PERSIANN NRL 3B42 3B42RT

Number 489,789 2,326,270 1,295,385 455,129 1,305,663

Table 7. Evaluation results of GPA versus 3 satellite ensembles and combining CMORPH with
TRMM 3B42 (CMORPH+3B42) over the TP at the seasonal and annual time scales for 2005–2007.

Arithmetic mean Inverse-error-square One-outlier-removed CMORPH+3B42

Bias RMSE CC Bias RMSE CC Bias RMSE CC Bias RMSE CC

Spring 0.892 3.671 0.511 0.567 3.589 0.520 0.110 3.408 0.533 −0.301 3.374 0.518
Summer 0.208 4.247 0.634 −0.056 4.228 0.633 −0.475 4.184 0.625 −0.494 4.338 0.601
Autumn 1.059 2.579 0.362 0.738 2.256 0.398 0.448 1.963 0.433 0.263 1.943 0.362
Winter 0.767 2.151 0.184 0.419 1.930 0.196 0.185 1.733 0.197 0.016 1.652 0.226
Annual 0.712 3.351 0.573 0.400 3.231 0.589 0.044 3.096 0.597 −0.148 3.127 0.583

Notes: The rainfall threshold is 0.1 mm day−1. Bold values are the best result obtained for a particular season and
for each statistical parameter.
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(1) The uncertainty map over the TP is produced for five satellite precipitation
estimates, and shows strong regional and seasonal dependencies. Larger uncer-
tainty is distributed in the east–southern TP, and relatively small uncertainty is in
the western and northern TP. Uncertainty has high seasonality, temporally chan-
ging with a decreasing trend from January to April, then remaining at a relatively
low value, and increasing after October, with an obvious winter peak and summer
valley.

(2) Overall, the uncertainty also shows an exponentially decreasing trend with higher
rainfall rates. Additionally, the effect of topography on the uncertainty tends to
rapidly increase when the elevation higher than 4000 m, while the impact slowly
decreases in areas lower than that topography. The effect of elevation on the
uncertainty is significant for all seasons except the summer.

(3) Further cross-investigations indicate that the uncertainty seasonality has a very
strong correlation with time series of MODIS-based SCF over the TP, correlation
coefficient as high as 0.75. This clearly indicates the limitation of current satellite-
based QPE being incapable of adequately resolving winter precipitation.

(4) To reduce the still relatively large and complex uncertainty over the TP, three data
merging methods are examined to provide the best possible satellite precipitation
data by optimally combing the five state-of-art products. The three merging
methods – arithmetic mean, inverse-error-square weight, and one-outlier-removed
arithmetic mean – show insignificant yet subtle differences. Bias and RMSE of
the three merging methods show seasonal dependency, but the one-outlier-
removed method is more robust and its result notably outperforms the five
individual products at the four seasons except the winter. The correlation coeffi-
cient by the three merging methods is consistently higher than any of the five
individual satellite estimates, indicating an effective and great improvement.
However, because of the large difference among satellite products in winter, the
result from the ensemble is not always better than the best one among the five
satellite products.

(5) Finally, the spatial distribution of the ensemble data is present against the five
individual satellite estimates, which indicate that the ensemble can provide a
general improvement over the entire studied region both at the seasonal and at
the annual time scales. Comparing the number of each satellite product being
taken as the outlier demonstrates that PERSIANN, TRMM 3B42RT, and NRL
contribute more uncertainty, while TRMM 3B42 and CMORPH contribute less
uncertainty. In warm seasons and at an annual time scale, combining
CMORPH with TRMM 3B42 cannot provide overall better results than those
from the one-outlier-removed method, but in winter it is still inferior to the
result obtained from TRMM 3B42. TRMM 3B42 shows the best performance
in wither over the TP. We recommend the result from the one-outlier-removed
method as the best over the TP for the seasonal and annual time scales except
for the winter, although these optimally merging multi-algorithm data appear a
cost-effective way to provide better-quality satellite precipitation data pre-
sently. The recently launched Global Precipitation Measurement Mission,
with dual-frequency precipitation radar and multi-frequency passive micro-
wave channels, holds promising potential in this complex and high-altitude
TP region, and the data from the GPM can further evaluate and verify the
results in this article.
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