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Abstract: Various reservoirs have been serving as the most important drinking water 

sources in Zhejiang Province, China, due to the uneven distribution of precipitation and 

severe river pollution. Unfortunately, rapid urbanization and industrialization have been 

continuously challenging the water quality of the drinking-water reservoirs. The identification 

and assessment of potential impacts is indispensable in water resource management and 

protection. This study investigates the drinking water reservoirs in Zhejiang Province to 

better understand the potential impact on water quality. Altogether seventy-three typical 

drinking reservoirs in Zhejiang Province encompassing various water storage levels were 

selected and evaluated. Using fifty-two reservoirs as training samples, the classification 

and regression tree (CART) method and sixteen comprehensive variables, including six 

sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, 

and climate), were adopted to establish a decision-making model for identifying and assessing 

their potential impacts on drinking-water quality. The water quality class of the remaining 
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twenty-one reservoirs was then predicted and tested based on the decision-making model, 

resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules 

and quantitative importance of the independent variables, industrial emissions was 

identified as the most important factor influencing the water quality of reservoirs; land use 

and human habitation also had a substantial impact on water quality. The results of this 

study provide insights into the factors impacting the water quality of reservoirs as well as 

basic information for protecting reservoir water resources. 

Keywords: drinking water; reservoir; water quality; potential impact; CART 

 

1. Introduction 

Due to the uneven spatiotemporal distribution of precipitation and the severe deterioration of river 

water quality, various reservoirs have been functioning for years as the most important sources of 

drinking water in Zhejiang Province. Reservoirs employed as drinking water sources represent 51% of 

the total number of centralized drinking water sources in rural areas and 69% in urban areas [1].  

The drinking water supply derived from approximately 500 reservoirs supports approximately 70% of 

the population in Zhejiang Province [2]. Therefore, maintaining the water quality of these reservoirs is 

particularly important for both water security and socio-economic development at the local and 

national levels [3]. Monitoring data has indicated that the overall status of the water quality of drinking 

water source reservoirs is favorable in Zhejiang; however, a number of reservoirs have been subject to 

increasing pressure and degradation, with a recent deterioration trend [4]. Sewage discharges have 

increased with the continuing economic development and urban construction, severely damaging  

the reservoir environment and affecting reservoir function. Simultaneously, as living standards have 

improved, the demand for high-quality water has also increased [1]. Therefore, a better understanding 

of the status of the water quality of drinking water reservoirs and the factors that impact water quality 

is urgently needed. 

Identifying the causes of water quality variability is challenging due to the limited availability of 

data and the absence of a unified theoretical and methodological system, particularly for large-scale 

studies. Most previous studies have referred to a single or small number of reservoirs [5–7] and thus 

lack generalizability and potential replication. Utilizing sufficient data and effective technologies,  

we investigated 73 drinking water source reservoirs and attempted to construct a methodological 

system for analyzing the causes of water quality variability in reservoirs. 

Numerous analytical methods have been developed and employed in previous studies to evaluate 

the factors impacting water quality, such as multivariate analysis [8], artificial neural networks (ANNs) [9], 

support vector machines (SVMs) [10], and genetic algorithms (GAs) [11]. The relationships between 

reservoir water quality and impacting factors are generally non-parametric and involve complex 

interactions. Therefore, favorable model fits are difficult to obtain using traditional statistical methods [12]. 

Methods using ANNs, SVMs, and GAs may not provide easily understandable explanations for 

researchers to obtain a complete understanding of the underlying nature of the data [13]. In comparison, 

decision tree analysis has no distinctive data requirements [14]. It can identify the most decisive 
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variables and offer easily understandable statements. Decision tree analysis has been widely used in 

various fields, such as ecological modeling, decision making, diagnosis, and marketing operations [15–17]. 

However, it has seldom been applied to water quality studies. In this study, decision tree analysis was 

employed to classify the water quality levels of reservoirs. The model consists of a set of rules to 

classify the water quality levels of reservoirs based on independent parameters derived from natural 

status and anthropogenic activities. In addition, GIS technologies have developed rapidly in recent 

years and have been successfully applied in various research fields. By contributing to multi-information 

storage and comprehensive multi-level analysis, GIS technologies have become powerful tools for 

ecological environmental investigations, particularly those involving wide spatial scales [18,19].  

Considering the history and current status of water quality and protection measures for drinking-water  

reservoirs in Zhejiang Province, this paper focuses on the following four main objectives:  

(1) to establish a decision-making model integrating GIS and classification and regression tree (CART) 

decision tree analysis for evaluating and analyzing the potential factors impacting reservoir water 

quality; (2) to identify the parameters that are most closely related to water quality and assess  

the quantitative importance of these factors on water quality; (3) to analyze the relationships between 

the identified important parameters and water quality and provide basic information for improving  

the protection of reservoir water resources. 

2. Materials and Methods 

2.1. Study Area 

Zhejiang Province, which is located in China’s eastern coastal area, is one of the most developed 

provinces in China. With an area of 101,800 km
2
 and a population of 54.77 million, Zhejiang is also 

one of the smallest and most densely populated provinces. The terrain in Zhejiang is complex and 

dominated by mountains and hills, which represent 70.4% of the area of the province. Plains and basins 

cover 23.2% of the province, whereas rivers and lakes cover 6.4%. Characterized by a subtropical 

monsoon climate, the region is warm and humid with substantial rainfall, distinct seasons,  

and sufficient sunlight. The annual average temperature ranges from 15 °C to 18 °C, and the annual 

average precipitation is between 980 and 2,000 mm. There were 479 reservoirs serving as sources of 

drinking water in Zhejiang Province in 2010. For this study, we selected 73 reservoirs representing the 

most important drinking water source reservoirs as an indicator of the overall reservoir status in 

Zhejiang Province. The locations and relative sizes of the sampled reservoirs are shown in Figure 1.  
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Figure 1. Locations and distribution of drinking-water reservoirs in Zhejiang Province. 

 

2.2. Data 

The following comprehensive data were used in the sequential evaluation: (1) a digital land use map 

for the year 2010 provided by the Chinese Ministry of Environmental Protection. The dataset was 

retrieved from the interpretation of remote-sensing data and field surveys with a validated overall 

accuracy exceeding 90%; (2) a digital elevation model (DEM) with 30 m resolution (Figure 2a), 

administrative division, and drainage maps, supplied by the Environmental Science Research Institute 

of Zhejiang Province; (3) historical water quality monitoring records, reservoir storage capacity and 

age information supplied by the Zhejiang Environmental Protection Bureau; (4) annual socio-economic 

data extracted from the Zhejiang Statistical Yearbook (2010) [20]; (5) meteorological records, obtained 

from the China Meteorological Data Sharing Service System; (6) map of ecological function zoning in 

Zhejiang Province. According to the ecological function zoning, the provincial terrestrial area is 

divided into five ecological function zones: southwest mountainous zone (I), northwest mountainous 

hilly zone (II), northeast plain zone (III), eastern coastal zone (IV) and central hilly basin zone (V) 

(Figure 1b). 

Source data were further processed by the following steps: (1) watershed boundaries were 

delineated using the DEM in the Hydrology module of ArcGIS 9.3, assisted by the drainage map 

(Figure 2b); in this process, the parameter of flow accumulation for segmentation was 4,000, the 

minimum number of cells for a stream was 1,000, and the minimum number of cells for a basin was 

2,000; (2) meteorological data were interpreted using the Kriging method; (3) the geo-reference of all 

layers was unified with the Universal Transverse Mercator (UTM) grid system, WGS_1984 geodetic 

datum; and (4) the watershed boundary map was overlaid on all other layers to compute parameters 

within the watersheds using ArcGIS. 
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Figure 2. (a) DEM of Zhejiang Province; (b) boundaries of the watersheds of sampled reservoirs. 

 

2.3. CART Decision Tree Model 

Decision trees are an important type of data mining algorithm. The basic process of a decision tree 

is to split a complex decision into a series of simpler decisions [21], potentially producing a solution 

that is easier to explain. With hierarchical, sequential classification structures, decision tree analysis 

can extract implicit information from bodies of data by recursively partitioning the learning sets [22,23]. 

Considering the ability to model the non-linear and non-additive relationships between a dependent 

variable and a certain number of independent variables, the CART model introduced by Breiman et al. [23] 

was employed to differentiate the water quality levels in this study. The importance of the independent 

variables relative to the dependent variable can be measured, and closely related independent variables 

are selected by CART. Moreover, a clearly understandable hierarchical system of decision rules for 

object classification can be easily displayed [14]. 

The CART process is sequentially divided into four main steps. The first step is tree building by 

using recursive splitting of nodes. Beginning with the root node, which includes all samples in the 

training set, the CART selects the best independent variables to split the node into two descendant 

nodes. During this process, all possible variables will be tested to find the best splitting values through 

calculating the maximal homogeneity between the two child nodes. The commonly used “Gini” index 

is adopted to measure the homogeneity of the two child nodes. Then each node is assigned a predicted 

class. The node splitting and the assignment of node classes process is repeated for each node whether 

it is split into descendant nodes and continued recursively. The second step is to stop the tree building 

process. The tree continuously grows by successive subdivision, which terminates when: (1) only one 

observation exists in each descendant node; (2) all observations within each of the descendant nodes 

have exactly the same distribution of independent variables; or (3) the setting of maximal depth in the 

tree is made by the user in advance. After this step a “maximal” tree has been created, which generally 

overfits the information contained within the training data. The third step is tree pruning, during which 

a sequence of simpler trees is generated, by using the method of “cost-complexity” pruning. In this 

method, a complexity parameter is used to control the pruning process. The fourth step refers to 
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optimal tree selection. The tree which fits the information in the training set, but does not overfit the 

information, is selected from the series of pruned trees created during the third step. The target in this 

step, defined in terms of expected performance on an independent dataset, is to find the best 

complexity parameter so that the information in the training dataset is fit but not overfit. Detailed 

descriptions of the CART process can be found in [23–26]. 

In our decision tree modeling, Forest%, Farmland%, Construction%, DOF, Res_D, Imm_D, GDP, 

Ind_output, Ind_wastewater, Ind_consumption, Treatment%, Distance, Capacity, and Precipitation 

were the predictor variables, and the reservoir water quality class in 2010 was the target variable.  

The CART process was conducted using the software SPSS Clementine 11.1. 

2.4. Reservoir Water Quality Classes 

Referring to the national assessment standards for surface water quality in China (GB3838-2002), 

all the reservoir water quality was assessed using a single-factor evaluation method and ranged into 

five classes (named as C1–C5) which were determined by the worst rate of a single index.  

The employed water quality indices and respective boundary values are described in Appendix A. 

Based on the monthly provincial monitoring records, each index in a reservoir was averaged by the 

sampled data. The water quality classes used for the CART process in this study were established 

based on the monthly mean values of all indices in the year 2010. All the 73 reservoirs meet the 

drinking water quality demand according to national standard, among which 14, 47 and 12 reservoirs 

belong to C1 (best class), C2 and C3 respectively. 

2.5. Comprehensive Impact Assessment Variables for Water Quality Level 

By comprehensively considering the regional characteristics of Zhejiang Province as well as the 

availability, comparability, and reliability of the data, 14 parameters representing anthropogenic 

activities, reservoir attributes, and climate were selected as independent variables (Table 1).  

Table 1. Description of assessment variables used in the CART analysis. 

Categories Name Abbreviation Unit 

Land use 

Percentage of forest Forest%  

Percentage of farmland Farmland%  

Percentage of construction land Construction%  

Degree of fragmentation DOF  

Population 
Resident population density Res_D people/km2 

Exotic population density Imm_D people/km2 

Socio-economic 

parameters 

Gross domestic product per unit area GDP 0.1 billion yuan/km2·a 

Industrial output value per unit area Ind_output 0.1 billion yuan/km2·a 

Industrial wastewater discharge per unit area Ind_wastewater 10,000 ton/km2·a 

Industrial water consumption per unit area Ind_consumption 10,000 ton/km2·a 

Sewage treatment rate Treatment%  
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Table 1. Cont. 

Categories Name Abbreviation Unit 

Geographical 

features 

Distance to city Distance km 

Elevation  m 

Characteristics 

of reservoirs 

Storage capacity Capacity 10,000 m3 

Age  year 

Climate Precipitation  mm 

Many studies have reported that human habitation and economic activities have a considerable 

influence on the water quality in adjacent aquatic systems [27,28] because these anthropogenic and 

economic activities cause emissions of domestic sewage and industrial waste, which threaten the 

health of the water environment. Based on the procurability of data, we selected Res_D, Imm_D, GDP, 

Ind_output, Ind_wastewater, Ind_consumption, and Treatment% as independent variables in our study. 

The resident population density was calculated based on the permanent resident population in the Sixth 

China Population Census. In addition, considering the status of Zhejiang’s economy, we added 

immigrant population density as an influencing factor that not only represents human activities but also 

indirectly reflects the local economic status. The population, GDP, industrial output value, industrial 

wastewater discharge, and industrial water consumption data were all from the year 2010 and were 

collected at the administrative scale instead of the watershed scale. Considering the close connection 

between these parameters and construction land use, we calculated the corresponding amount of each 

of the above variables for each watershed according to the proportion of construction land in the 

watershed to that in the administrative region and then used the area of the watershed to calculate the 

population density and per unit area of the other four variables. 

Various investigations have demonstrated that land use has significant impacts on the adjacent 

hydrologic systems [29–31]. The land use patterns are closely linked to the characteristics of 

anthropogenic activities, which in turn influence the processes by which pollutants are carried into 

aquatic systems. Water quality in various aquatic systems has been found to be closely related to the 

compositions of land-use types or spatial configurations of land use patterns within a watershed [31]. 

In this study, four parameters were employed to represent land use: percentage of forest, percentage of 

farmland, percentage of construction land, and degree of fragmentation. The degree of fragmentation 

can reflect the status of the integrity of a terrestrial ecosystem and the conditions of the landscape 

pattern and is computed as follows: 

         (1) 

where Ci is the degree of fragmentation, Ni is the sum of patches, and Ai is the total regional area. 

Geographical position reflects the transport processes for pollutants across the landscape and is 

closely related to local land-use patterns and economic development [29]. Therefore, geographical 

position has a significant impact on the water quality of reservoirs. We chose elevation to indicate the 

geographical position of reservoirs. The effect of cities on water quality has been widely discussed [32,33]. 

In this study, the distance from the reservoir to the city was extracted to assess the influence of cities 

on reservoir water quality. 
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Reservoirs with different storage capacities have dissimilar purification abilities, and reservoirs with 

different ages are associated with unequal risks such as risk of contamination, risk of sediment filling 

and risk of surrounding development. Therefore, both storage capacity and age could lead to differences 

in water quality. To explore the relationship between the two variables and reservoir water quality,  

we employed them for modeling. 

Hydrology is demonstrated by many studies to be significantly related to the surface water  

quality [34,35]. In this study, precipitation was utilized as the indication of hydrological status. 

Precipitation data for each watershed were obtained through the Kriging interpolation method [36,37] 

based on monthly records from 18 monitoring points in Zhejiang Province in 2010. 

3. Results 

3.1. Spatial Distribution of Water Quality 

The spatial distribution of reservoirs was clearly shown in Figure 3 that most reservoirs with the best 

water quality (class C1) were intensively located in the southwest mountainous function zone which was 

dominated with forest and characterized by low social-economic development-intensity, and occurred 

dispersedly in the northwest mountain-hill zone and central hill-basin zone. The reservoirs with 

relatively poor water quality (class C3) were dispersedly distributed in all zones except the southwest 

mountainous zone. 

Figure 3. Spatial distribution of reservoir water quality. 

 

3.2. Rules for Predicting Reservoir Water Quality by CART 

The 52 training reservoirs were randomly selected from the range of water quality classes and 

included 10, 34, and eight reservoirs from classes C1, C2, and C3, respectively. The rules (Table 2) 

included nine nodes and the following seven parameters: Ind_output, Ind_wastewater, GDP, Res_D, 

Imm_D, Construction%, and Forest%. These parameters primarily represented the surrounding 

anthropogenic activities, including population agglomeration, land use, and economic activities, and 
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were most closely related to the water quality of the study reservoirs. The remaining parameters were 

excluded from the rules, not because they had no relation with the water quality of the reservoirs but 

because they did not significantly affect the water quality compared with the parameters listed above, 

which masked their effect. This result indicates that the causes of reservoir water quality variability are 

extremely complex and comprehensive. The accuracy of the CART training process in correctly 

attributing reservoirs to their respective water quality classes was 94.2%. The testing group was then 

used to assess the predictive ability of the CART model. The overall CART accuracy for assigning 

reservoirs to the correct water quality classes was 81.0%, suggesting that the rules for predicting 

reservoir water quality were acceptable. 

Table 2. Rules for predicting reservoir water quality classes. 

Water Quality 

Classes 
Rules 

C1 
Ind_output ≤ 0.183 & GDP ≤ 0.195 & Ind_wastewater ≤ 0.119 

Ind_output ≤ 0.183 & GDP ≤ 0.195 & Ind_wastewater > 0.119 & Imm_D ≤ 15 

C2 

Ind_output ≤ 0.183 & GDP ≤ 0.195 & Ind_wastewater > 0.119 & Imm_D > 15 

Ind_output ≤ 0.183 & GDP > 0.195  

Ind_output > 0.183 & Ind_wastewater ≥ 0.831 & Forest% ≥ 78.1% 

Ind_output > 0.183 & Ind_wastewater < 0.831 & Construction% ≥ 2.13% & Res_D ≤ 795 

Ind_output > 0.183 & Ind_wastewater < 0.831 & Construction% < 2.13% 

C3 
Ind_output > 0.183 & Ind_wastewater < 0.831 & Construction% ≥ 2.13% & Res_D > 795 

Ind_output > 0.183 & Ind_wastewater ≥ 0.831 & Forest% ≤ 78.1% 

According to the rules, the reservoir water quality was mainly related to anthropogenic activities. 

Industrial conditions represented by Ind_output, Ind_wastewater, and Imm_D had a large contribution 

in separating water quality classes. Ind_output and Ind_wastewater were the most important 

parameters distinguishing the classes of water quality. The water quality levels of reservoirs located in 

regions with higher industrial output values were inferior to those of reservoirs in relatively less 

developed areas. Whereas industrial wastewater discharge clearly poses a great threat to adjacent 

waters, GDP and population density were also associated with water quality; higher values of both of 

these parameters increase pressure on reservoirs. In addition, forest and construction land use exerted a 

certain impact on water quality levels, consistent with the results of [31]. Notably, Farmland% was 

excluded from the CART rules. 

3.3. Evaluation of the Influence of Parameters on Reservoir Water Quality 

CART could calculate the relative importance of parameters included in the decision tree on water 

quality classes. However, the variables that did not appear in the rules cannot be quantitatively 

assessed. To evaluate the influence of parameters on water quality, the 52 training reservoirs were used 

to obtain the quantitative importance of the parameters Ind_output, Ind_wastewater, GDP, Res_D, 

Imm_D, Construction%, and Forest%. Table 3 presents the misclassification error of the decision tree 

model when using different groups of parameters. Parameters related to economic activities including 

Ind_output, Ind_wastewater, and GDP were most important for differentiating water quality (omission 

of these parameters increased the misclassification error to 19.2%), followed by land use 
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(misclassification error of 15.4%) and population density (misclassification error of 13.5%).  

With respect to the influence of a single parameter on reservoir water quality, Ind_wastewater and 

Ind_output had the greatest influence on water quality, indicating that pollution during industrial 

production processes is the greatest source of water deterioration. Ind_wastewater and Ind_output were 

followed by GDP, Construction%, Res_D, Imm_D, and Forest%. 

Table 3. Misclassification error using different independent variables in CART. 

Variables Misclassification error rate 

All 5.8% 

Missing Ind_wastewater 17.3% 

Missing Ind_output 15.4% 

Missing GDP 13.5% 

Missing Construction% 13.5% 

Missing Res_D 11.5% 

Missing Imm_D 9.6% 

Missing Forest% 7.7% 

Missing Construction%, Forest% 15.4% 

Missing Res_D, Imm_D 13.5% 

Missing Ind_wastewater, Ind_output, GDP 19.2% 

4. Discussion 

4.1. Economic Development and Industrial Pollution in Zhejiang Province 

Zhejiang Province is one of the most developed provinces in China and has undergone rapid 

urbanization and industrialization in recent decades. During this rapid economic growth, neglect of 

ecological protection and an absence of scientific development concepts have led to excessive 

consumption of resources and various environmental problems that consequently limit further 

development and daily life. 

The statistical data indicate that from 2006 to 2010, wastewater emissions followed an increasing 

trend, and the average annual growth rate of industrial wastewater and domestic sewage emissions was 

2.5% and 8%, respectively. The wastewater discharge was 3.93 billion tons in 2010, 55.4% of which 

was from industrial process and the remainder from human activities. Emissions in northern and 

eastern cities, such as Hangzhou, Ningbo, and Wenzhou, were considerably higher than those in 

southwestern cities, such as Quzhou, Lishui, and Taizhou, because of the imbalance of development. 

The discharge of industrial waste gas and solid waste amounted to 2.04 trillion m
3
 and 42.68 million 

tons in 2010, respectively, representing respective growth rates of 58.9% and 70.5% from the year 

2005. Based on the statistics in 2010, for every $100 million of GDP, 0.88 million tons of waste water 

were discharged, and for every $100 million of industrial output value, 0.88 billion m
3
 of industrial 

waste gas and 18.4 thousand tons of industrial solid waste were produced, several or even dozens of 

times higher than the waste produced in developed countries. 
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4.2. Population Density and Water Quality  

Human activities produce residential pollutants, primarily food waste, washing residues, hospital 

sewage, and household garbage [28]. Zhejiang Province is densely populated, and the high population 

density in reservoir catchments has always been a primary challenge in reservoir water protection. 

Domestic pollutants with abundant nitrogen and phosphorus and nutrients have increased considerably 

in recent years with the rapid improvement of people’s living standards. However, due to the lack of 

proper processing of these pollutants, most were directly discharged into the natural environment and 

carried by runoff into water bodies [1]. Moreover, the reservoir areas are rich in tourist resources.  

The dramatic expansion of the catering industry and tourism has led to an increase in the fluid 

population and thus in pollution. 

Thus, it is necessary and urgent to enhance the control of domestic pollutants for reservoir water 

source maintenance. Construction of sewage treatment facilities is recommended to negate the harmful 

effects associated with expanding population. Harmless disposal of residential garbage could be  

an effective way for reservoir water protection. Landfills within watersheds must be strictly prohibited 

to prevent adverse impact of pollutants on reservoirs. In addition, reductions in population densities 

within watersheds could be a promising approach to alleviate the pressure on water quality derived 

from human activities.  

4.3. Effects of Land Use on Reservoir Water Quality 

Many studies indicate that there is a strong relationship between land use and the water quality in 

adjacent water bodies [30,31,38]. Consistent with previous studies [30,31], this study demonstrated 

that the expansion of construction land increases the risk of water quality deterioration, whereas the 

expansion of forest land benefits adjacent water bodies. The expansion of construction land reflects 

increased industrial development or population, which lead to increased industrial or domestic pollution. 

Agricultural non-point source pollution plays an important role in water quality degradation, which 

easily occurs on sloping arable land [28]. Unexpectedly, the parameter of percentage of farmland was 

not selected in the CART model. Baker reported that the extent of negative impact that arable land has 

on water quality is determined by tillage methods and geographical position [39]. In Zhejiang 

Province, paddy fields constitute the main arable land, and the farming practices for this type of 

agricultural land use are different from those for other agricultural land uses in many ways, including 

fertilization, irrigation, and method of drainage. Jeon and Yoon et al. argued that the loading of 

nutrient from paddies to water bodies is largely determined by the field management of water and 

fertilizer as well as precipitation [40,41]. To enhance nutrient uptake by plants, farmers keep the 

paddies flooded after fertilization. Therefore, the negative influence is modest under normal 

circumstances but is intensified by large amounts of precipitation [40]. In addition, slope plays a 

significant role in non-point source pollution for paddies or dryland. The arable land in mountain or 

hilly area has a greater slope, increasing the risk of soil erosion and area-source pollution. However, 

there is less farmland in these regions compared to plain areas; in the latter, the farmland has a smaller 

slope, with less risk of pollution. Therefore, the parameter of percentage of farmland does not 

accurately reflect agricultural non-point source pollution within the watershed. 
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In conclusion, land use per se does not lead to pollution; rather, human activities on the corresponding 

land determine the types and level of pollution [42]. Measuring the land use in watersheds is an indirect 

but effective way of projecting human activities and can be used to assess the water quality of the 

receiving water bodies as long as the characteristics of anthropogenic activity and natural factors in a 

specific region are considered [31]. 

4.4. Precipitation and Reservoir Water Quality 

It is interesting that precipitation was not identified as an important variable in the CART model.  

It could be attributed to the fact that the precipitation has complicated effect on receiving water quality, 

with both positive and negative sides. Changes in rainfall could affect surface runoff and reservoir 

storage and, hence, the mobility and dilution of contaminants [34]. More receiving water can increase 

the water mobility, benefitting the contaminants dilution, but could possibly bring in more pollutants 

such as nutrient and heavy metal [29,43]. Additionally, although abundant rainfall benefits the vegetation 

growth combined with water conservation, it can also increase the risks of soil erosion combined with 

deterioration in water quality [44]. Therefore, it is difficult to quantitatively evaluate the relation 

between precipitation and reservoir water quality. 

4.5. Reservoir Water Quality Protection Based on Ecological Function Zoning 

The five primary-level ecological function zones which were partitioned principally based on 

natural climate, geographical characteristics and landforms, and social-economic development 

situation have imposed significant impact on drinking-water reservoir protection. However, although 

specific protection policies such as the optimization and upgrading of industry have been promoted for 

the northeastern plain zone, central hilly basin zone, and eastern coastal zone, there has been a tendency 

of industry to shift from the southeast coastal areas to the sparsely populated southwestern areas which 

has inevitably imposed increasing pressure upon the reservoirs in these areas. Therefore, drinking 

water source protection requires proper execution of an ecological function zoning strategy and strict 

regulation of the development and transfer of industry. 

In addition, several other types of spatial zoning and regulation focusing on land resource 

exploitation and configuration, among which urban and rural planning, overall planning for land 

utilization are of greatest importance to the government will also give rise to potential and specific 

impact on drinking-water reservoir. In fact, the ecological function zones have acted as the imperative 

guideline and spatial control boundary for various zoning and regulation in practice. 

5. Conclusions 

In this study, the CART decision tree method was employed to estimate the classes of reservoir 

water quality based on a set of parameters, and a reasonable accuracy was obtained. The CART 

analysis indicated that most of the parameters comprising the rules encoded by anthropogenic factors, 

including industrial activities, human habitation, and land use, are likely responsible for reservoir water 

quality variability. The quantitative comparison of the importance of the seven parameters included by 

the rules revealed that industrial emissions were the most important factor for the variability of reservoir 
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water quality. The methodology proposed in this study enables the rapid, robust, and informative 

identification of the causes of variation of reservoir water quality and is applicable to other areas, 

potentially serving as an operational tool for planners and managers. 
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Appendix A 

Table A1. Environmental guideline of national quality standards for surface waters, China 

(GB3838–2002) (units: mg/L).  

Parameters 
Category of water quality standards 

First Second Third Fourth Fifth 

DO ≥ 7.5 6 5 3 2 

CODMn ≤ 2 4 6 10 15 

COD ≤ 15 15 20 30 40 

BOD ≤ 3 3 4 6 10 

NH3-N ≤ 0.15 0.5 1 1.5 2 

TP ≤ 0.01 0.025 0.05 0.1 0.2 

TN ≤ 0.2 0.5 1 1.5 2 

TCu ≤ 0.01 1 1 1 1 

TZn ≤ 0.05 1 1 2 2 

F
−
 ≤ 1 1 1 1.5 1.5 

TSe ≤ 0.01 0.01 0.01 0.02 0.02 

TAs ≤ 0.05 0.05 0.05 0.1 0.1 

THg ≤ 0.00005 0.00005 0.0001 0.001 0.001 

TCd ≤ 0.001 0.005 0.005 0.005 0.01 

Cr6+ ≤ 0.01 0.05 0.05 0.05 0.1 

TPb ≤ 0.01 0.01 0.05 0.05 0.1 

TCN ≤ 0.005 0.05 0.2 0.2 0.2 

V-ArOH ≤ 0.002 0.002 0.005 0.01 0.1 

Petroleum ≤ 0.05 0.05 0.05 0.5 1 

Anionic 

surfactant 
≤ 0.2 0.2 0.2 0.3 0.3 

S2− ≤ 0.05 0.1 0.05 0.5 1 

Fecal coliform 

(number/L) 
≤ 200 2,000 10,000 20,000 40,000 
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