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The objective of this study is to quantitatively evaluate the successive Tropical Rainfall Measuring Mis-
sion (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and further to explore the improve-
ments and error propagation of the latest 3B42V7 algorithm relative to its predecessor 3B42V6 using the
Coupled Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu Basin of
Bhutan. First, the comparison to a decade-long (2001–2010) daily rain gauge dataset reveals that: (1)
3B42V7 generally improves upon 3B42V6’s underestimation both for the whole basin (bias from
�41.15% to �8.38%) and for a 0.25� � 0.25� grid cell with high-density gauges (bias from �40.25% to
0.04%), though with modest enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for basin-
wide and from 0.37 to 0.41 for grid); and (2) 3B42V7 also improves its occurrence frequency across
the rain intensity spectrum. Using the CREST model that has been calibrated with rain gauge inputs,
the 3B42V6-based simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and
0.25 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in monthly scale),
a comparable skill score with the gauge rainfall simulations. After recalibrating the model with the
respective TMPA data, significant improvements are observed for 3B42V6 across all categories, but not
as much enhancement for the already-well-performing 3B42V7 except for a reduction in bias (from
�26.98% to �4.81%). In summary, the latest 3B42V7 algorithm reveals a significant upgrade from
3B42V6 both in precipitation accuracy (i.e., correcting the underestimation) thus improving its potential
hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in situ
gauges even without recalibration of the hydrological model by the satellite precipitation, a compensat-
ing approach often used but not favored by the hydrology community, particularly in ungauged basins.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Precipitation is among the most important forcing data for
hydrological models. It has been arguably nearly impossible for
hydrologists to simulate the water cycles over regions with no or
sparse precipitation gauge networks, especially over complex ter-
rain or remote areas. Recently, the satellite precipitation products
such as TMPA (Huffman et al., 2007), CMORPH (Joyce et al.,
2004), PERSIANN (Sorooshian et al., 2000) and PERSIANN-CCS
(Hong et al., 2004) are starting to provide alternatives for estimat-
ing rainfall data and also pose new challenges for hydrologists in
understanding and applying the remotely-sensed information.

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA), developed by the National Aeronau-
tics and Space Administration (NASA) Goddard Space Flight Center
(GSFC), provides a calibration-based sequential scheme for
combining precipitation estimates from multiple satellites, as well
as monthly gauge analyses where feasible, at fine spatial and
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temporal scales (0.25� � 0.25� and 3 hourly) over 50�N–50�S
(Huffman et al., 2007). TMPA is computed for two products:
near-real-time version (TMPA 3B42RT, hereafter referred to as
3B42RT) and post-real-time research version (TMPA 3B42 V6,
hereafter referred to as 3B42V6). 3B42V6 has been widely used
in hydrological applications (Bitew and Gebremichael, 2011; Bitew
et al., 2011; Khan et al., 2011a, 2011b; Li et al., 2012; Stisen and
Sandholt, 2010; Su et al., 2008), however, its computation ended
June 30th 2011 and 3B42V6 was replaced by the new version
(TMPA 3B42 V7, hereafter referred to as 3B42V7), which has been
reprocessed and available from 1998 to present. Previously,
3B42V6 has been validated by several studies (Bitew and Gebre-
michael, 2011; Bitew et al., 2011; Chokngamwong and Chiu,
2008; Islam and Uyeda, 2007; Jamandre and Narisma, 2013; Jiang
et al., 2012; Li et al., 2012; Mishra et al., 2010; Stisen and Sandholt,
2010; Su et al., 2008; Yong et al., 2012, 2010), while the newly
available 3B42V7 is evaluated in tropical cyclone systems (Chen
et al., 2013) and the United States (Chen et al., in press; Kirstetter
et al., 2013), it has not been extensively statistically and hydrolog-
ically validated in mountainous South Asian regions.

Therefore, the objectives of this study are designed (1) to eval-
uate the widely used globally-available, high-resolution TMPA
satellite precipitation products over the mountainous medium-
sized Wangchu basin (3550 km2) in Bhutan, and more importantly
(2) to assess improvements of the latest upgrade version (3B42V7)
relative to its predecessor in terms of statistical performance and
hydrologic utility. Additionally, this study aims to shed light on
the suitability of recalibrating a hydrological model with the remo-
tely-sensed rainfall information. The remainder of this paper is
organized as follows: Section 2 introduces the study area, the data-
sets used, and the methodology, including a brief description of the
CREST distributed hydrological model and its upgrade to the new
version (CREST Version 2.0). The results are discussed in Section
3, and then Section 4 draws the conclusions of this study.
2. Study area, data and methodology

2.1. Study area

The Wangchu Basin, with a total drainage area of approximately
3550 km2 is located within 89�60–89�460E and 27�60–27�510N in the
west of Bhutan (Fig. 1). Wangchu Basin is the most populous part
of the country with about 3/5 of the population living in 1/5 of the
basin area. The basin is equipped with one streamflow gauge at the
outlet Chhukha Dam Hydrological station and five rain gauge sta-
tions. The soil types are dominated by Sandy Clay Loam (75.1%)
and Loam (24.9%) based on the Harmonized World Soil Database
(HWSD v1.1) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). The various veg-
etation types of this basin are composed of evergreen needleleaf
forest (48.1%), woodland (17.8%), open shrubland (9.7%), wooded
grassland (8.2%), grassland (7.6%) and other land-use types (less
than 10%) (Hansen et al., 2000).

The northern periphery of the Wangchu Basin in the Himalayas
has elevations over 6000 m and maintains an annual snowpack.
Lower portions of the basin are drastically different and are subject
to a summer monsoon from May to October (Bookhagen and
Burbank, 2010). On average, the annual month with the greatest
precipitation is July or August with 161–546 mm/month based
on the five rain gauge station data shown in (Table 1), and the larg-
est resulting streamflow occurs in June or August with 251 m3 s�1.
It is possible that snowmelt contributes to a portion of this peak
streamflow, but the majority is driven by the summer monsoon
rains. In this study, neither the precipitation products nor the
model explicitly deal with frozen precipitation. These are subjects
requiring additional investigation, especially in light of the
forthcoming Global Precipitation Measurement Mission (GPM),
which aims to quantitatively estimate frozen precipitation
amounts.

2.2. In situ and satellite precipitation datasets

2.2.1. Gauged precipitation and discharge data
Daily observed precipitation data are obtained from the Hydro-

Met Services Department of Bhutan from 2001 to 2010 for the 5
rain gauge stations located within the Wangchu basin. In winter,
frozen precipitation is reported in the form of water equivalent
and computed by melting the ice/snow with hot water in the stan-
dard vessel and deducting the hot water volume from the total vol-
ume. The Thiessen polygon method is used to interpolate the rain
gauge data to the spatial distributed grid data fitting the model
grid resolution (30 arcsec) (Fig. 1). We also obtained the daily dis-
charge data at the basin outlet for the same time period.

2.2.2. TMPA 3B42 research products
TMPA precipitation products are available in two versions:

near-real-time version (3B42RT) and post-real-time research ver-
sion (3B42) adjusted by monthly rain gauge data. The 3B42 prod-
ucts have two successive versions: version 6 and the latest
version 7 (3B42V6 and 3B42V7). In this study, we evaluated and
compared the two high-resolution (3 h and 0.25� � 0.25�) satellite
precipitation products: 3B42V6 and 3B42V7.

The TMPA algorithm (Huffman et al., 2007) calibrates and com-
bines microwave (MW) precipitation estimates, and then creates
the infrared precipitation (IR) estimates using the calibrated MW.
After this, it combines the MW and IR estimates to create the TMPA
precipitation estimates. MW data used in Version 6 are from the
TRMM Microwave Imager (TMI), Special Sensor Microwave Imager
(SSM/I) F13, F14 and F15 on Defense Meteorological Satellite Pro-
gram (DMSP) satellites, and the Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) on Aqua, and the
Advanced Microwave Sounding Unit-B (AMSU-B) N15, N16 and
N17 on the NOAA satellite; IR data collected by geosynchronous
earth orbit (GEO) satellites, GEO-IR. The 3B42V6 also use other
data sources: TRMM Combined Instrument (TCI) employed from
TMI and PR, monthly rain gauge data from GPCP (1� � 1�) and
the Climate Assessment and Monitoring System (CAMS)
0.5� � 0.5� developed by CPC. Based on the lessons learned in
3B42V6, 3B42V7 includes consistently reprocessed versions for
the data sources used in 3B42V6 and introduces additional data-
sets, including the Special Sensor Microwave Imager/Sounder
(SSMIS) F16-17 and Microwave Humidity Sounder (MHS) (N18
and N19) and Meteorological Operational satellite programme
(MetOp) and the 0.07� Grisat-B1 infrared data. All of these data
can be freely downloaded from the website: http://trmm.gsfc.na-
sa.gov/ and http://mirador.gsfc.nasa.gov.

2.2.3. Evapotranspiration
The potential evapotranspiration (PET) data used in this study

are from the global daily potential evapotranspiration database
provided by the Famine Early Warning Systems Network (hereafter
referred as FEWSPET) global data portal (see http://earlywarn-
ing.usgs.gov/fews/global/web/readme.php?symbol=pt). FEWSPET
is calculated from the climate parameter extracted from global
data assimilation system (GDAS) analysis fields, has 1-degree res-
olution, and covers the entire globe from 2001 to the present.

2.3. CREST model

The Coupled Routing and Excess Storage (CREST) Model (Khan
et al., 2011a; Khan et al., 2011b; Wang et al., 2011) is a grid-based
distributed hydrological model developed by the University of



Fig. 1. Wangchu Basin Map. (a) Location of Bhutan and the surrounding countries. (b) Location of Wangchu Basin in Bhutan and its elevation. (c) Map of Wangchu Basin, rain
gauges, streamflow station, topography, Thiessen polygons applied to the rain gauge data and the 0.25� � 0.25� grids of the satellite rainfall estimates.

Table 1
Monthly observed precipitation and runoff averaged from 2001 to 2010 (bold value means the maximum value of this station).

Month Rain Gauge (mm/month) Streamflow station

Betikha Dochula Drukgyel Dzong Namjayling Haa DSC_Paro Chhukha (m3 s�1)

January 14 19 0 12 8 26
February 49 18 9 24 18 23
March 176 17 26 33 15 25
April 346 53 29 54 34 38
May 368 105 60 69 57 55
June 390 279 123 124 81 111
July 546 359 185 183 199 222
August 383 368 191 161 103 251
September 326 217 108 120 77 180
October 182 116 71 77 63 109
November 10 11 3 4 3 52
December 4 9 1 2 1 34
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Oklahoma (http://hydro.ou.edu) and NASA SERVIR Project Team
(www.servir.net). It computes the runoff generation components
(e.g., surface runoff and infiltration) using the variable infiltration
capacity curve (VIC), a concept originally contained in the Xinanji-
ang Model (Zhao, 1992; Zhao et al., 1980) and later represented in
the VIC Model (Liang et al., 1994, 1996). Multi-linear reservoirs are
used to simulate cell-to-cell routing of surface and subsurface run-
off separately. The CREST model couples the runoff generation
component and cell-to-cell routing scheme described above, to
reproduce the interaction between surface and subsurface water
flow processes. Besides the hydrologic and basic data (DEM, flow
direction, flow accumulation, slope, etc.), the CREST model em-
ploys gridded precipitation and potential evapotranspiration
(PET) data as its forcing data. CREST Version 1.6 model has been
applied at both global (Wu et al., 2012) and regional scales (Khan
et al., 2011a, 2011b) (more applications can be found at website:
http://eos.ou.edu and http://www.servir.net).

The CREST model used in this study is the upgraded version
CREST V2.0. The main features of the latest version are: (1)
enhancement of the computation capability using parallel distribu-
tion techniques to make the model more efficient than the previ-
ous version (Wang et al., 2011); (2) model implementation with
options of either spatially uniform, semi-distributed, or distributed
parameter values; (3) automatic extraction of a-priori model
parameter estimates from high-resolution land cover and soil tex-
ture data. The physically-based parameters, Ksat and WM, can be
derived from land cover types and soil texture data based on a
look-up table (Chow et al., 1988); (4) a modular design framework
to accommodate research, development and system enhancements
(see Fig. 2(a)); and (5) inclusion of the optimization scheme SCE-
UA (Duan et al., 1992; Duan et al., 1993) to enable automatic cali-
bration of the CREST model parameters (see Fig. 2(a)). Table 2
shows 11 parameters and their descriptions, ranges and default
values. Fig. 2(b) shows the vertical profile of hydrological processes
in a grid cell. It shows the precipitation is intercepted by a canopy
to generate throughfall, and then the throughfall is separated into
surface runoff and infiltration components by the variable infiltra-
tion curve. Finally, two linear reservoirs are employed to simulate
sub-grid cell routing.

2.4. Evaluation statistics

In order to quantitatively analyze the performance of 3B42V6
and 3B42V7 precipitation products against rain gauge observations
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and the effect on streamflow simulation, three widely used valida-
tion statistical indices were selected in this study. The relative Bias
(%) was used to measure the agreement between the averaged va-
lue of simulated data (in this study, we call both TMPA products
and simulated streamflow as ‘‘simulated data’’, ‘‘SIM’’ was used
in the formulae) and observed data (such as rain gauge and ob-
served streamflow in this study, ‘‘OBS’’ was used in the formulae).
The root mean square error (RMSE) was selected to evaluate the
average error magnitude between simulated and observed data.
We also use correlation coefficient (CC) to assess the agreement
between simulated and observed data.

Bias ¼
Pn

i¼1SIMi �
Pn

i¼1OBSiPn
i¼1OBSi

� �
� 100 ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOBSi � SIMiÞ2

n

s
ð2Þ

CC ¼
Pn

i¼1ðOBSi � OBSÞðSIMi � SIMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOBSi � OBSÞ2

Pn
i¼1ðSIMi � SIMÞ2

q ð3Þ

where n is the total number of pairs of simulated and observed
data; i is the ith values of the simulated and observed data; SIM

�

Table 2
Parameters to be calibrated in CREST V2.0, their description, ranges and default
values.

Parameter Description Numeric
Range

Default
Value

Ksat Soil saturated hydraulic conductivity
(mm/d)

0–
2827.2

500

RainFact Multiplier on the precipitation field 0.5–1.2 1.0
WM Mean soil water capacity 80–200 120
B Exponent of the variable infiltration

curve
0.05–1.5 0.25

IM Impervious area ratio 0–0.2 0.05
KE Ratio of the PET to actual

evapotranspiration
0.1–1.5 1.0

coeM Overland runoff velocity coefficient 1–150 90
coeR Multiplier used to convert overland flow

speed to channel flow speed
1–3 2

coeS Multiplier used to convert overland flow
speed to interflow flow speed

0.001–1 0.3

KS Overland reservoir discharge parameter 0–1 0.6
KI Interflow reservoir discharge parameter 0–1 0.25
and OBS
�

are the mean values of simulated and observed data
respectively. Nash–Sutcliffe Coefficient of Efficiency (NSCE) is also
used to assess the performance of model simulation and
observation.

NSCE ¼ 1�
Pn

i¼1ðOBSi � SIMiÞ2Pn
i¼1ðOBSi � OBSÞ2

ð4Þ
3. Results and discussion

3.1. Comparison of precipitation inputs

To better understand the impact of precipitation inputs on
hydrologic models, the accuracy of the satellite precipitation
against the in situ rain gauge observations should be assessed first.
This section compares the TMPA and gauge observations over the
time span of January 1, 2001–December 31, 2010 considering
the basin-average precipitation and within a grid cell containing
the dense rain gauge observations (Fig. 1). Fig. 3 shows that both
3B42V6 and 3B42V7 systematically underestimate, though at dif-
ferent levels, with biases of �41.15% and �8.38% and CCs of 0.36
and 0.40 at daily scale, respectively. Similar statistics are found
at 0.25� grid-cell scale. Fig. 4 indicates that 3B42V6 largely under-
estimates with a bias of �40.25% and low CC of 0.37, while 3B42V7
has practically no bias (0.04%) and a relatively higher CC value
0.41.

Figs. 3(d) and 4(d) present the inter-comparison of monthly
precipitation estimates to gain further information about the pre-
cision and variations at longer time scales. The monthly data for
both basin-based and grid cell-based analyses were accumulated
from daily data over the same time span from January 2001 to
December 2010. At monthly time scale, both the basin-based and
grid cell-based data show that 3B42V7 has better agreement with
the monthly rain gauge data. Both Figs. 3 and 4 indicate that the
latest V7 algorithm significantly corrects the underestimation bias
in its predecessor version V6.

Fig. 5(a) and (b) show the frequency distribution of daily
precipitation for different precipitation intensities (PI) for the
basin-averaged and the grid cell-based precipitation time series,
respectively. Fig. 5(a) shows that for the basin-averaged data, both
3B42V6 and 3B42V7 overestimate at the low PI range (less than
5 mm/day), but they underestimate at the medium and high PI
ranges. However, 3B42V7 is in better agreement with the rain
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gauge observations than 3B42V6 for the basin-averaged compari-
son across all PIs. Similarly, better agreement has been found in
Fig. 5(b) for the new Version-7 products at the grid cell scale,
except for values greater than 30 mm/day where there is
overestimation.
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3.2. Streamflow simulation scenarios

Although different precipitation products vary in accuracy and
spatiotemporal resolutions, they might have similar hydrological
prediction (i.e., streamflow simulation) skill after re-calibrating
the model using the respective precipitation products (Jiang
et al., 2012; Stisen and Sandholt, 2010). In the previous section,
we compared the 3B42V6 and 3B42V7 precipitation products
against the rain gauge observations; the next step is to evaluate
how these two TMPA products affect streamflow simulations. Their
hydrological evaluation is performed under two scenarios:

I. In situ gauge benchmarking: Calibrate the CREST model with
5 years of rain gauge data (January 2001 through December
2005). Then, replace the rain gauge forcing with precipita-
tion from 3B42V6 and 3B42V7 for an independent validation
period from January 2006 through December 2010 using the
rain gauge-calibrated model parameters.

II. Product-specific calibration: Recalibrate the CREST model
using the 3B42V6 and 3B42V7 precipitation data, respec-
tively, over the same calibration period and then use the
product-specific parameter sets to simulate streamflow over
the same validation period as Scenario I.
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Table 4
As in Table 3, but for monthly data.

Precipitation
products

Scenario I Scenario II

NSCE Bias
(%)

CC RMSE NSCE Bias
(%)

CC RMSE

Calibration period
Gauge 0.91 �9.75 0.96 25.18 – – – –
3B42V6 0.25 �53.01 0.88 72.08 0.75 �1.66 0.87 41.41
3B42V7 0.77 �27.06 0.94 39.76 0.91 �4.83 0.95 25.41

Validation period
Gauge 0.70 �29.59 0.88 43.63 – – – –
3B42V6 0.19 �57.81 0.89 71.35 0.79 �8.65 0.89 36.29
3B42V7 0.80 �25.25 0.94 35.58 0.89 �3.08 0.95 26.53

Table 3
Comparison of daily observed and simulated streamflow under two calibration
scenarios.

Precipitation
products

Scenario I Scenario II

NSCE Bias
(%)

CC RMSE NSCE Bias
(%)

CC RMSE

Calibration period
Gauge 0.76 �9.73 0.89 45.38 – – – –
3B42V6 0.23 �52.94 0.80 81.99 0.63 �1.70 0.80 56.55
3B42V7 0.66 �26.98 0.86 54.65 0.78 �4.81 0.88 43.94

Validation period
Gauge 0.59 �29.59 0.83 57.85 – – – –
3B42V6 0.17 �57.78 0.78 82.98 0.65 �8.67 0.81 54.00
3B42V7 0.63 �25.15 0.83 55.26 0.72 �3.02 0.86 47.72
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Scenario I, gauge benchmarking, is widely used by the hydro-
logical community especially over gauged basins, while Scenario
II is arguably deemed as an alternative for application to ungauged
basins where only rainfall from remote-sensing platforms are
available for use.
3.2.1. Scenario I: CREST benchmarked by in situ gauge data

(1) Rain gauge calibration and validation
The CREST model parameters are calibrated using rain gauge in-

puts for the period from January 2001 to December 2005 using the
automatic calibration method (SCE-UA) by maximizing the NSCE
value between the simulated and observed daily streamflow. The
calibrated model is subsequently validated for the period from
January 2006 to December 2010. Fig. 6 compares the simulated
streamflow forced by rain gauge data with the observed stream-
flow in terms of time series plots and exceedance probability plots
at daily and monthly scales. Fig. 6(a) and (b) show that general
agreement exists between the observed and simulated streamflow.
However, the simulated streamflow consistently underestimates
the peaks, especially in the validation period and in relatively
low flow seasons as well. The exceedance probabilities in
Fig. 6(c) and (d) also show underestimation at low and high
streamflow observations, while the simulations match relatively
well in the intermediate ranges. As summarized in Tables 3 and
4, the statistical indices show that there is very good agreement
between the simulated and observed hydrographs in the calibra-
tion period for both daily and monthly time scale, and reasonable
simulations occurred in the validation period as well. Based on the
criteria of the statistical indices in Moriasi et al. (2007), the model
calibration and validation results indicate that the CREST model is
well benchmarked by the in situ data at the daily and monthly
time scale, so it can be used to evaluate the utility of the satellite
precipitation products for hydrological prediction (i.e., streamflow)
in this basin.

(2) Impacts of satellite precipitation forcing

The gauge-benchmarked model is then forced by the TMPA
3B42V6 and 3B42V7 products from 2001 to 2010 using the model
parameters calibrated by rain gauge data during the period from
2001 to 2005. Figs. 7 and 8 compare the daily and monthly time
series of the simulated and observed hydrographs for both the
calibration and validation periods. While 3B42V6 largely missed
the high peak flows at both daily and monthly time series,
3B42V7 adequately captured a majority of the peak flows, espe-
cially at the smoothed monthly scale. The daily and monthly statis-
tical comparisons in Tables 3 and 4 show that the daily and
monthly simulations forced by rain gauge data had better skill
(NSCE = 0.76/0.91, BIAS = �9.73%/�9.75%, CC = 0.89/0.96) than
those based on 3B42V6 and 3B42V7 in the calibration period,
which is expected. Interestingly, the 3B42V7-forced model simula-
tions had very similar to and slightly better performance compared
to the rain gauge-forced simulations in the validation period. A
likely explanation is one of the rain gauge stations (i.e. the Dochu-
la) had missing data from September 2006 to December 2010,
which apparently degrades the hydrologic skill of this product.
Overall, simulations forced by 3B42V7 were a significant improve-
ment over 3B42V6. This clearly shows the improvements of the
new version-7 algorithm upon its predecessor V6 products both
statistically and now hydrologically.
3.2.2. Scenario II: CREST calibrated by individual TMPA products
To further assess the effects of TMPA 3B42 (V6 and V7) products

on streamflow, the CREST model is recalibrated and validated with
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Fig. 8. As in Fig. 9, but the parameters were recalibrated using 3B42V6 and 3B42V7,
respectively.
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Fig. 7. Comparison of CREST simulated streamflow from 3B42V6 (blue line) and
3B42V7 (red line) with gauge-calibrated parameters and observed stream flow in
both calibration (2001.1.1–20.5.12.31) and validation (2006.1.1–2010.12.31) per-
iod. (a) Daily data from 3B42V6; (b) Daily data from 3B42V7; (c) Monthly data from
both 3B42V6 and 3B42V7. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3B42V6 and 3B42V7 for the same period as Scenario I. This sce-
nario is often used as an alternative strategy for remote sensing
precipitation over ungauged basins. As shown in Fig. 8, all simula-
tions are significantly improved after the recalibration, and they
capture most of the daily and monthly peak flows. Comparatively,
the CREST model simulations based on 3B42V7 inputs have better
skill than those based on 3B42V6. As summarized in Tables 3 and
4, simulations have good statistical agreement with observed
streamflow at daily and monthly scale.

The statistical indices of daily NSCE, Bias and CC in Table 3 were
selected for visual comparison of the two modeling scenarios. Fig. 9
indicates that the product-specific recalibration in Scenario II has
obviously improved the NSCE and CC values and reduced the Bias
values for both the calibration and validation periods. It is noted
that the recalibration forcing with 3B42V7 in Scenario II has much
higher NSCE and smaller Bias than 3B42V6, and very comparable
CC values, all of which improved upon the rain gauge-bench-
marked model.

3.3. Discussion of parameter compensation effect from Scenario II

Table 5 shows the optimum parameter sets forced by 3B42V6
and 3B42V7, relative to the gauge forcing, for the calibration period
from 2001 to 2005 using the SCE-UA algorithm. Note that the
parameter values of Ksat and WM are spatially distributed but
have been basin-averaged and summarized in Table 5. It shows
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Table 5
CREST model parameter values calibrated with different precipitation inputs for the
calibration period of January 2001–December 2005.

Parameters Gauge 3B42V6 3B42V7

RainFact 0.87 1.34 0.98
Ksat 56.90 33.09 52.73
WM 166.50 142.71 166.52
B 1.48 1.48 1.48
IM 0.20 0.20 0.20
KE 0.10 0.05 0.13
coeM 88.05 63.67 67.95
coeR 2.68 1.33 1.44
coeS 0.43 0.47 0.67
KS 0.99 0.71 0.78
KI 0.20 0.13 0.14
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that 3B42V7-calibrated parameters have less deviation from the
gauge-calibrated parameter values than 3B42V6. For example,
RainFact is the adjustment factor of the precipitation either due
to canopy interception or bias. Table 5 shows that 3B42V6
increases the RainFact value from 0.87 to 1.34, to compensate its
underestimation as shown in Figs. 3 and 4, while 3B42V7’s esti-
mated value (0.98) is closer to 1 and the Gauge value (0.87).
Another example is KE, the ratio of potential evapotranspiration
to the satellite PET data. Table 5 reveals that 3B42V6 demands a re-
duced KE value from 0.10 to 0.05 in order to partition more precip-
itation into runoff while 3B42V7 only slightly increases it from
0.10 to 0.13, possibly to partially offset the above RainFact in-
crease, amongst other parametric interactions. The third example
is Ksat, the soil saturated hydraulic conductivity. Table 5 shows
that the Ksat of 3B42V6 reduced from 56.90 to 33.09 while V7 only
changed slightly from 56.90 to 52.73. Regarding the mean water
capacity, WM, 3B42V6 decreased from 166.50 to 142.71 to hold
less water in the soils while 3B42V7 did not change much from
the gauge-calibrated value, which is presumably closer to the
truth. It also shows the overland flow coefficient, coeM, the average
channel flow speed, coeR, the overland flow recession coefficient,
KS, and the interflow recession coefficient, KI, all had reduced
values to retain more water in the river basin after recalibrating
the parameters to both of the satellite products. Not surprisingly,
Table 5 also shows some opposite changes of values such as KE
for 3B42V7 and coeS, the surface-interflow conversion factor, for
both 3B42V6 and 3B42V7, resulting in a slight decrease in
streamflow.

In addition to the analysis of the parameters properties, water
balance analysis is another important indicator for analyzing the
effect of the parameter recalibration. Thus the difference of water
balance components over 10-year (2001–2010) simulations is fur-
ther examined using rain gauge and TMPA 3B42 rainfall, respec-
tively. In CREST model, the water balance budgeting partitions
the precipitation after canopy interception into actual evapotrans-
piration (ET), runoff depth (i.e. streamflow) and water storage
change (DS), as shown in Fig. 10. As expected, precipitation is the
dominant runoff generation input so in Fig. 3, all satellite rainfall
forced simulations underestimated the streamflow compared to
rain gauge results in scenario I. However, in scenario II, the model
was recalibrated with respective satellite rainfall, the increased
partition of the satellite driven streamflow simulations comes at
the expense of a significant decrease of water storage due to the ef-
fect of the parameters value changes (shown in Fig. 10). In the
gauge rainfall driven simulations, 27.90% of precipitation will be
stored in this basin, however, 26.43% (27.18%) of precipitation is
water storage in scenario I while 8.95% (16.09%) in scenario II for
3B42V6 (3B42V7).

From the above discussion, it is clear that the overall effect of
the recalibrated parameter sets is to largely compensate for rainfall
underestimation in 3B42V6 while less so for 3B42V7. The effect of
arriving at a very similar simulation with different combinations of
parameter settings has been called ‘‘Equifinality’’ of the hydrolog-
ical model (Aronica et al., 1998; Beven and Freer, 2001; Zak and
Beven, 1999). This study clearly shows how different parameter
settings can compensate for errors in the satellite rainfall forcing
and can thus improve model predictions of streamflow. It is possi-
ble that the current model structural deficiency, i.e., not accounting
for snowmelt process, is compensated by the model re-calibration.
However, this parameter compensation effect comes with the price
of having a locally optimized model with parameter values unrep-
resentative of reality. This might limit the model’s predictive capa-
bility at internal sub-basins, or under different initial conditions.
This is particularly concerning under scenarios involving climate
change. In any case, the recalibration strategy could be especially
problematic for 3B42V6 (Bitew and Gebremichael, 2011; Jiang
et al., 2012), however the 3B42V7 product gives higher confidence
for use in ungauged basins even without the need for recalibration.
4. Summary and conclusions

Satellite precipitation products are very important for regional
and global hydrological studies, particularly for remote regions
and developing countries. This study first focuses on statistically
assessing the accuracy of the TMPA 3B42V6 product vs. its latest
successive version 3B42V7, and then hydrologically evaluates their
streamflow prediction utility using the CREST distributed hydro-
logic model in the mountainous Wangchu Basin of Bhutan.

The two versions of TMPA satellite products are statistically
compared with a decade-long (2001–2010) rain gauge dataset at
daily and monthly scales. In general, 3B42V7 consistently improves
upon 3B42V6’s underestimation both for the whole basin (bias im-
proved from �41.15% to �8.38%) and for a 0.25� � 0.25� grid cell
with high-density gauges (bias improved from �40.25% to
0.04%), though with modest enhancement of correlation coeffi-
cients (CC) (from 0.36 to 0.40 for entire basin and from 0.37 to
0.41 for the grid cell). 3B42V7 also improves upon 3B42V6 in terms
of occurrence frequency across the rain intensity spectrum. Appar-
ently the results show that the new algorithm 3B42V7 has much
improved accuracy upon 3B42V6, in concert with other studies
in different areas (Chen et al., 2013a,b; Kirstetter et al., 2013).
The improvement from V6 to V7 is mainly a combination of three
factors: (1) the enhanced TMPA Level-2 retrieval algorithms (Chen
et al., 2013a; Kirstetter et al., 2013), (2) incorporation of the global
gauge network (i.e. GPCC) data with improved climatology and
anomaly analysis (Huffman et al., 2011), and (3) additional satellite
observations incorporated (Huffman and Bolvin, 2012).
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For the hydrological evaluation, two scenario-based calibration
and validation experiments are conducted over the same 10-year
time span. Scenario I, in situ gauge benchmarking, is widely used
by the hydrological community especially over gauged basins,
while Scenario II, input-specific recalibration, is arguably deemed
as an alternative for application to ungauged basins where only re-
mote-sensing rainfall data may be available for use. In Scenario I,
the 3B42V6-based simulation shows lower hydrologic prediction
skill in terms of NSCE (0.23 at daily scale and 0.25 at monthly scale)
while 3B42V7 performs fairly well (0.66 at daily scale and 0.77 at
monthly scale), a comparable skill score with the simulations using
the gauge benchmark. For the precipitation-specific calibration in
Scenario II, significant improvements are observed for 3B42V6
across all statistics. These enhancements are not as obvious for
the already-well-performing 3B42V7-calibrated model, except for
some reduction in bias (from �26.98% to �4.81%). This behavior
is consistent with previous studies (Bitew and Gebremichael,
2011; Bitew et al., 2011; Jiang et al., 2012). This study offers unique
insights into 3B42V6 and 3B42V7 products in a mountainous South
Asian basin.

In concert with several other studies by Chen et al. (2013a) and
Kirstetter et al. (2013) in the US and Chen et al., 2013b in the tro-
pics, this study also reveals the latest 3B42V7 algorithm has a
noticeable improvements from 3B42V6 both in terms of accuracy
(i.e., correcting the underestimation) and in its promising hydro-
logical, even with or without recalibration of the hydrological
model with respective rainfall inputs. The parameter compensa-
tion effect is often recognized but still used by the hydrology com-
munity. This approach has been noted to be problematic due to
unrealistic parameter settings which may ultimately limit the
model’s predictive capability under conditions of climate change
and differing initial conditions.
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