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Orientation Angle Calibration for Bare Soil Moisture
Estimation Using Fully Polarimetric SAR Data

Xinyi Shen, Yang Hong, Qiming Qin, Weilin Yuan, Sheng Chen, Shachua Zhao, and Trevor Grout

Abstract This paper focuses on assessing the effectiveness
of applying orientation angle calibration to polarimetric syn-
thetic aperture radar (PolSAR) data for soil moisture estima-
tion. We employ Cloude-decomposition-based method to estimate
the orientation angle because it can relate a scatter-distributed
pixel to its major component of an equivalent pure target,
use the Jet Propulsion Laboratory/Airborne Synthetic Aperture
Radar L-band fully polarimetric data to validate the proposed
method, and observe results in good agreement after orientation
angle compensation is employed. Speci cally, root mean square
errors of measured radar backscattering coef cients 2, and

9, and copolarization ratio versus advanced integral equation
model predictions are reduced signi cantly from 1.95, 1.33, and
2.03 dB to 1.30, 1.15, and 1.43 dB, respectively. The compensated
copolarized backscattering coef cients are also used as inputs to
a novel inversion model to estimate the dielectric factor R, and
volumetric soil moisture m,,. The results show that the estimation
errors are reduced signi cantly from 0.075 to 0.054 and 0.056 to
0.041 for Rhnh and my,, respectively. This paper demonstrates the
advantage of orientation angle calibration as a preprocessing for
estimating bare soil moisture, particularly in agricultural areas,
and the preponderance of fully PoISAR data on soil moisture
estimation over dual and single polarizations.

Index Terms Data calibration, polarimetric, soil moisture esti-
mation, synthetic aperture radar (SAR).

l. INTRODUCTION

LTHOUGH SEVERAL methods [1] [4] have been pro-

posed to retrieve the orientation angle of polarimetric
synthetic aperture radar (SAR) (PolSAR) data, few studies take
it into consideration on soil moisture estimation. Despite the
fact that Lee et al. [2] have pointed out that responses of
all polarizations (HH, HV, VH, and VV) are affected in
the presence of azimuth slope which produced the orientation
angle, most forward and inversion microwave remote sensing
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models simply assume the absence of orientation angle. Thus,
they generally result in considerable errors in soil moisture
estimation without eliminating the effect of orientation angle.
Since the digital elevation model (DEM) of corresponding
resolution is not always available, it is more convenient to
estimate orientation angle directly from fully PoOISAR data than
from DEM. Therefore, the objective of this paper is to validate
the effectiveness of adopting orientation angle compensation
for retrieving soil moisture from PoISAR data.

During the past decades, many efforts have been made to
derive electromagnetic wave scattering and emission models.
Among them, integral equation model (IEM) [5] is the most
widely used because of its large valid region for various natural
surfaces [6]. Its most recent updated version, i.e., advanced
IEM (AIEM) [7] [9] is used in this study. When the surface is
considered to be isotropic and exponentially correlated, AIEM
is reduced to its most general forward form

gp :AIEM( rvhrms,l—C) (l)

where hyms and Lc stand for the root mean square (rms) of
surface height and the correlation length and  is the relative
dielectric constant of soil, calculated by (2) [10]

r = f(my,sc, T,freq) 2

where my, sc and T, and freq stand for volumetric soil
moisture, characteristic and temperature of a given site, and
the microwave frequency, respectively. Since the frequency
of data used in this study is 1.26 GHz (L-band), several
empirical coef cients of (2) should be changed according to
Peplinski et al. [11]. Compared with Kirchhoff Approximation
(KA) and small perturbation model (SPM), AIEM sacri ces
its simplicity to high precision and wide-applicable range of
natural surfaces. It is dif cult, though not impossible, to in-
vert directly from AIEM. To deal with the inversion problem,
several empirical [12] and semiempirical inversion methods
[13] [15] have been proposed. Despite their inspiration on soil
moisture retrieval from SAR data, their complexity, loyalty
to physical prediction, solving stability, and estimation accu-
racy are not satisfactory. To assess the improvement of soil
moisture estimation using the orientation angle elimination, a
novel inversion model is derived based strictly on solving the
multiplicative equation that relates soil parameters to AIEM
simulation.

In Section 1I, we brie y introduce the de nition of orien-
tation angle, its polarimetric data-based estimation method,
and its compensation formulas [1] [4]. In Section III, the
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inversion model is introduced and validated in detail based
on AIEM simulation. Section IV describes the experimental
data, sites, and software. In Section V, the orientation angle
calculated independently using polarimetric data at PLC bands
is compared to that of DEM, respectively. Then, the orientation
angle outcome derived from polarimetric data at L-band is
used to compensate the copolarization backscattering. Finally,
the copolarized backscattering before and after applying the
orientation angle compensation method is used as an input to
the inversion model in Section Il to estimate the soil mois-
ture separately. The following are observed: 1) the orientation
angles from L- and P-bands are consistent to that from DEM
while that from C-band is too noisy to use; 2) rms errors (rmses)
of compensated backscattering versus AIEM predictions are
signi cantly reduced; and 3) rmses of estimating the dielectric
and m,, are greatly reduced. Therefore, this paper demonstrates
the necessity of employing the orientation angle elimination as
a preprocessing procedure before retrieving bare soil moisture
given available fully PoISAR data.

Il. DEFINITION AND COMPENSATION OF
ORIENTATION ANGLE

The orientation angle is de ned as the offset angle between
the assumed horizontal polarization vector and the local hori-
zontal polarization vector [1], [2]. Fig. 1 shows the geometry of
the orientation angle. Let X Y Z be the reference coordinate
system that satis es the right-hand helix and the X O Z plane
be the incidence plane. The assumed horizontal polarization
vector is parallel to the Y -axis. In other words, the assumed
horizontal polarization vector Hp supposes that the tangential
plane is parallel to the X O Y plane. Vy is the assumed vertical
polarization vector. k denotes the wavenumber vector. Ho, Vo,
and k satisfy the right-hand helix. However, for a tilted surface
which usually occurs, the local horizontal vector is no longer
parallel to the X O Y plane. As a result, all polarizations are
affected by the tilted slope [1]. Naturally, the radar-measured
backscattering coef cients shift from the theoretic models such
as AIEM. For illustration, let N stand for the unit normal vector
of the tilted local surface. The local horizontal polarized vector
is calculated by

N k
IN- K|

H = 3)

where k stands for the unit vector of k in Fig. 1. The orientation
angle (theta in Fig. 1) is de ned by the angle between H; and
Ho, so that it is determined by incidence angle and local normal
vector.

Lee et al. compared several strategies of calculating orien-
tation angles. Cloude-decomposition-based method [16], [17]
is chosen in this study due to its robustness and computational
ef ciency [1].

For single-look complex (SLC) data, the Sinclair matrix [17]
after rotation around line of sight [1] was represented by

SuH  Shv @)

S =RSR" =
SvH Svv
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Fig. 1. Geometry of orientation angle. X Y Z is the reference coordinate sys-
tem. Z-axis stands for the normal to the reference horizontal plane, and X O Z
is the incidence plane, where k stands for the unit vector of wave propagation
direction. Ho is the H-polarization vector to the reference coordinate system,
and Vo is the vertical one. N stands for the unit normal vector of the local
tangential plane. H, stands for the direction of the local H-polarization vector

which is parallel to the local tangential plane. The angle between H; and Ho,
theta, is the orientation angle.

where
SHH  Shv
S= 5
SvH Svv ©)
R= COS sin ©)
sin  cos

where S is the original Sinclair matrix [17], is the orientation
angle, and R is the rotation matrix because of the existence
of the orientation angle.  consists of the two vectors in the
polarization plane, so it is parallel to the line of sight k in Fig. 1.
If SLC data were available, the inversion of (6) could be
used directly to compensate the data. For multilook complex
(MLC) data, coherency (T3) and covariance (C3) matrices are
used at monostatic case [17]. For a pixel of distributed targets,
the correspondence of T3/C3 to a single S might not exist [1],
[17] due to the assemble operator . To extract the orientation
angle using MLC data, the power of the equivalent pure target
should be extracted rst by using Cloude decomposition [16].
Pure target here means an averaged pixel whose Sinclair
matrix contains only one rotation matrix. The component that
corresponds to the rst eigenvalue is used because it contains
the major power of the total. Then, a sole for an individ-
ual pixel can be estimated. By replacing Sop with Sgp in
(7), shown at the bottom of the next page, the formulas of
orientation-angle-affected coherence matrix T3 are obtained.
For ease of reference, we only put T2, Re(T>23), and T3z here

To2=2sin(4 )Re ( SuHSHy  ShvSyy )
+2 |S|_|\/|2 Re SHHSVV
+>  |Suul® + ISvvl?

+> IShnl? + ISvv?

2Re SpnuSyy )cos(4 ) 9)
T33:25|n(4 )Re( SHHSHV + SHV SVV )
= ISuul® + ISvv

2 2
Re SHHSVV +2 ISHV|
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1
> IShul® + ISvvI®? 4 |Skv

2Re SHHSyy )cos(4 ) (10)
Re(T23) =2cos(4 )Re( ShvSyy + SHHSHy )
+ 5 ISvv > + ISuul> +4 [Skv|?
+ 2Re SpnSyy ]sin(4 ) (11)

where Tjj denotes the ith row and jth column element of

T3. Note that we can move the orientation angle out of the
assembly sign in (9) (11) because of the following.

1) is a unique rather than random value in the pure
target.

2) is dependent on the line of sight and the local slope
which is independent from the random distribution within
a pixel.

By assuming the re ection symmetry [17], SpnS,,, and
ShvSyy In(9) (11) are zero. Thus, we have

2Re(T
tan( 4 )= _2Re(Tzs)
Too + T3z
4Re SHH SVV SHV
= (12)
[SHH  SvvI[? +4 [Shv?
= ! 4
3 3
1 1 2R€‘(T23)
= - - 7 —+ .
where 2 tan Toz + Taz (13)

The four-quadrant inverse tangent is denoted by tan *. In the
presence of MLC data, it is more straightforward to extract
9, and 9, from C3 (covariance matrix) than from T3 after
orientation angle compensation. Using the same method for
deriving T3 but changing to , we have the compensation
formulas for the covariance matrix Cs. Cjj stands for the (i, j)
element of the orientation angle free covariance matrix Cs

IShn|? = cos*( )Ci1  cos?( )sin(2 )Re(C1z)
+ %sin2(2 )Re(C13) + %sinz(z )C2s

sin?( ) sin(2 )Re(Cys) + sin*( )Cas
ISvv|? = sin*( )Cy1 +sin(2 )(1 +cos )Re(Ciz)

+ %sinz(Z )Re(Cy3) + %sinz(z )Co:
+ c0s?( )sin(2 )Re(Ca3) + cos*( )Caz. (15)

(14)

The formulas here are identical to those in [1].

I1l. SoIL MOISTURE INVERSION ALGORITHM

In this section, we derived a novel model that applies to
L-band to facilitate the inverse problem. Since L-band falls
into the low-frequency region (AIEM approaches SPM), it is
possible to split the backscattering coef cients into the product
of a dielectric and a roughness factor. However, the forms have
never been clearly de ned. Some of the previous studies [14],
[15] assumed that

op = RppSr (16)
where Rpp stands for the power of polarization amplitude in
SPM which depends on the relative dielectric constant and radar
incidence angle and S, stands for the roughness factor

2
r 1

Rhh =] nnl® = — 17)
(cos +  sin? )2
( 1) sin? (1+sin? )
Rw =| vv|2 = ’ riz (18)
(rcos +  sin® )2
where  stands for the radar incidence angle and | stands for

the relative dielectric constant of the soil.

Through simulation, we found that, in the presence of very
small hyms or of small incidence angles ( 30 ), (16) did not
introduce considerable error. In cases of both relatively large
incidence angle ( =30 ) and large soil roughness (hyms >
1.5 cm), however, the equation cannot yield a constant Sy
for a given soil roughness parameter (hyms, Lc) because the
oversimpli ed assumption of S, = 2 /Rpp makes Sy vul-
nerable to the change of Rpp. Fig. 2(a), (d), (9), (), and (m)
are the 3-D plots of (hyms,Lc) versus roughness factor at

=20,30,40,50 ,and 60 of HH polarization; Fig. 2(b),
(e), (h), (k), and (n) are those of V V polarization; Furthermore,
assuming a unique roughness factor in a given (hyms, Lc) value
forboth 2, and O, is not realistic and, therefore, inaccurate.

In our study, we keep the assumption that the combination of
copolarized backscattering from bare soil is the product of a di-
electric and a soil roughness factor without supposing the forms
gratuitously. Then, we verify the assumption by simulation and
derive its form to obtain the proposed soil moisture inversion
model.

First, we assume that

P\hvv = f(th) Srhhvv (19)
where 2., = &, 5. Without loss of generality, we suppose
|a] + |b| = 1. The parameters a and b, which change according
to the incidence angle, are the adjustable ratios to minimize the

1 ISk + Svv |2 (SHH +Svv)(SHH  Svv) 2 (SHH +Svv)Shy
T =3 (SHH *+Svv) (SHH  Svv) IShH Svv |? 2 (SHn  Svv)Shy )
2 (SHH +Svv) Shv 2 Spv(SHH  Svv) 4 IShv?
ISHn[? 2 ShnSpy SHHSyy
C= 2 SuvSuy 2 |ShvI? 2 ShnShy (8)
SHHSyv 2 Shv Sy ISvv |?
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Fig. 2. Comparison of soil roughness factor derived from (16) and (19) at = 20, 30, 40, 50, and 60, respectively. The left and middle columns are the results
of (16) at hh and vv polarized state respectively and the right column is that of (19).



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SHEN etal.: CALIBRATION FOR BARE SOIL MOISTURE ESTIMATION USING FULLY POLSAR DATA 5

error. Since Ry, and Ry, are convertible to each other, only
Rnn is used throughout this paper. The logarithm of (19) is
written

In ﬂhvv =In f(th) + InSrphvy. (20)
By assumption, the rst term on the right-hand side of (20)
depends only on Rnn while the second depends exclusively
on (hyms, Lc). Therefore, an overdetermined linear system,
(21), is used to derive their values. The left-hand side of (21)
stands for AIEM-simulated normalized radar cross section at
copolarizations. It is calculated from the whole valid region of
the natural surface and AIEM, which is

hrms  [0.1 cm, 3.5 cm] with 0.1 cm interval.
Lc  [1cm,30 cm]with 1 cm interval.
my [0.03, 0.4] with 0.01 cm3/cm? interval.

Assuming n as different Rp, values and k as different
(hrms, L) cases, there are n k equations in total. The coef-

cient matrixis (n k) (n+Kk). The rstk equations stand
for Rhh = Rphn1 and Srp = Srhhwi, SThhw?, - - - » SThhvvk-

The [(i 1k+1]™" (i k)™ equations stand for the case
that
In Ehvvl
In hhvv?2
In to1hvvn k
1 0 0 1
1 0 0 1
1 0 0 1
0 1 0 1
0 1 0 1
. T(Rnhn1)
0 1 0 1 T(Rnn2)
... 0 1 . .
_ 0 1 . T(Rnhn)
. Sr1
0 1 Sr2
0 .. .
O e Srk
0
1
1
0 0 0 1
(21)

Rhh = Rnhni and Srpnyy repeat its k values. Thus, the elements
of i 1) k+1 i k rows of the coef cient matrix are
one in the ith column, and the last k columns are lled by a
k  kidentity matrix. The (n + k) dimension solution column,
named Trajan column in this paper, is obtained by solving the
linear system. The rst n elements of Trajan column stand for
INT(Rhh)IRnm=Rnn1 Run, While the last k unknown elements
stand for k different Srpnyy. We substitute the solved Trajan

column back to the equations. If all the equations are satis ed,
(20) and (21) hold. Otherwise, they are invalid. By simulation,
we found that (20) and (21) hold for a wide range of incidence
angles (20 to 60 )and (a, b). Thus, (a, b) needs to be optimized
to minimize the error for a given . An up to 1.5-order polyno-
mial is accurate enough for tting In f(Rpp) at any incidence
angle

In f(th) =aq + bdR%r? + C4qRphh + ddR%r? (22)

To demonstrate the advantage of (19) over (16), we have
compared the uniqueness of roughness factor de ned by both
modelsat =20 60 . Fig. 2(c), (), (i), (1), and (o) are those
of (19). The criteria / , calculated by averaging the ratio of
deviation and mean value of the roughness factor at a given
(hrms, Lc) over the entire roughness region, is used to assess
the uniqueness/error of the roughness factor in Fig. 2. De ned
by both (19) and (16), the roughness factor should not scatter
very much for any given (hyms, Lc). Obviously, compared to
either polarized state of (16), the roughness factor de ned by
(19) has a better uniqueness, and / of (19) is usually around
1/20 1/10 of that of (16). Even at the worst case = 60 , the
error of roughness factor in (19) is around 1%. The roughness
error of (16) increases with hyns drastically in Fig. 2 while that
of (19) does not. Therefore, the model error of (16) is larger
than what is shown in Fig. 2 for rough surfaces. Moreover, (20)
and (22) can be easily employed to detect the change of soil
moisture at a signi  cantly better precision by differentiating the
temporal data (in decibels) since soil roughness of the same
place usually remains constant in the absence of cultivation,
heavy rain, and ood. In that scenario, the particular form of
Sry, does not need to be speci ed. However, in this study, the
form of Srpnvy(hrms, L) can be precisely t by up to four
orders of polynomial

In SrthV(hl’m51 LC)
= asr + sy INhyms + Csr INLC + ds(IN hrms)2

+ esr(INLC)2 + For IN yms In LC + s (IN Ryms)

+ hsr(InLc)® + isr In(hrms) (In Lc)?

+ jsr(INhrms)? IN L + Ksr (I hymg)* + 15 (In Lc)*

+ Mgr IN(hyms)(IN Lc)2 + ng-(In hyms)?(In Lc)?

+ 0sr(INhyms)® In L. (23)
The coef cients aq dg and asr jsr depend only on  and
(a,h). The optimized (a,b) for =20 60, with 10 in-
tervals, and their corresponding coef cients are given in
Tables 1. Obviously, the optimal (a,b) for all incidence an-
gles approaches (0.5, 0.5) which is the geometric average
of the copolarized backscattering. Measured in decibel and
power, the nal tting standard errors are 0.0033/1.91
10 #4,0.0068/2.15 10 4,0.0173/3.84 10 4,0.0345/4.72
10 4,and 0.0622/5.96 10 4, respectively. Another fact worth
noticing is that the eld radar data usually contain noise, which
greatly ampli es the model error in the nal estimation of soil
moisture. We compared the model error and nal estimation
error of soil moisture from (16) and (19) using the same eld
data in Table Il and found that the rmse of (19) is signi cantly
reduced from that of (16).



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

TABLE |

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

BEST CHOICE FOR DIFFERENT INCIDENCE ANGLES AND THEIR CORRESPONDING COEFFICIENTS FOR (22) AND (23)

Lg a ad bd Cy dd
20 0.45 -5.437663123  13.10272936  -13.25317109  5.853613831
30 0.475  -5.621478711 12.87630701  -12.12806631 5.078048334
40 0.45 -5.917247288  12.54320402  -10.61139173  4.155539293
50 0.475  -6.31476841 12.12388474  -8.831542209  3.165951254
60 0.475  -7.015857204  12.16896159  -7.766646474  2.783108906
19 aS I8 b.?l‘ c sr d.&'r eSF .](; r
20  -3.463696882 1.607673428  1.928989206  -0.667467548 0.00032262  -0.161217111
30  -3.538221368 1.630609795 1.993829751  -0.565068464  -0.467521953  -0.116738216
40  -3.662978586 1.674650619  1.913713618  -0.427828632  -0.706689693  -0.031167634
50  -3.967277203  1.75915836  1.776144273  -0.279606906  -0.773688402 0.072795
60  -4.474350405 1.784088918  1.634270497  -0.167582816  -0.699746814  0.232110936
19 gsr hsr isr er kSF lS?‘
20 -0.355268767 -0.236604642 0.114562542  0.078445731  -0.051876506  0.034320686
30 -0.267067015  -0.079014752  0.142175326 0.12223757 -0.034898289  0.018908709
40  -0.184898694  0.017423534  0.119145595  0.130142452  -0.023802847  0.008442321
50  -0.118754726  0.053308786  0.080820073  0.124213505  -0.018820029  0.004496176
60  -0.063643961  0.031789757  0.033904895  0.133462905 -0.01591598 0.00735472
'—9 er nSI‘ OSI‘
20 -0.008951547  0.029409014  0.058555262
30 -0.020782374  0.013149057  0.051217866
40 -0.021765793  0.000559035  0.036659637
50 -0.01880933  -0.009203706  0.019912201
60 -0.015135275  -0.020289302  0.003936835
TABLE I 1 o~
ERROR OF MODEL AND SOIL MOISTURE ESTIMATION USING FIELD DATA ’ IS \\\
09r \ g ~g—— DidBerroriine 1
error(¥\$ 20 30 40 50 60  Fielddata aEk N R ]
0.075d8 error line ——= s
mo 07} e VI
Eq.16hh 14 30 50 66 7.3 14.7 ol S vl — ™
Eq.16,w 13 25 38 51 7.1 12.5 S
05+ . . R 4
Eqg. 19 01 02 0.3 0.7 1.2 4.1 © Valid Region of a
04r ]
. . 03r Pl
Obviously, the smaller the incidence angle, the better the g
proposed model works. In addition, even the maximum error 02 |
(= 60) is negligible compared with the noise of current SAR 01t 1
data. It should be noted that the more (a, b) deviates from its ‘ L , ‘

optimum, the larger error this model introduces. For example,
when (a,b) = (1,0) and (a,b) = (0,1), rmse will be larger
than when (a, b) = (0.5,0.5). When (a,b) = (0.5, 0.5), the
maximum error occurs. When the error exceeds our tolerance,
we de ne that the region of (a,b) is invalid for the proposed
model. Fig. 3 gives the rmse contours for different incidence
angles. Obviously, within the same error level, the smaller is the
incidence angle, the larger is the valid region of (a, b).

D L
20 25 30 35 40 45 a0 55 60
9 (in degrees)

Fig. 3. RMSE contour map for parameter
different incidence angles.

a of the proposed model at

Subtracting the Sr, term calculated by (23), estimating Rnn
is reduced to a matter of solving the 1.5-order equation. Since
(17) gives a straightforward relationship between Ry, and .,
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Fig. 4. Experimental sites around Little Washita watershed in southern Okla-
homa from Google Earth. Bare soil elds are highlighted.

once the soil characteristics and temperature are known, m,,
can be immediately obtained by simply tting the soil moisture
input to that in [10] and [11] by the output of (17). We found
that

— 0.5
my = amy + bvahh + Cvahh

+ dmvRES + emvRE, + Ty RZY (24)

ts this relationship accurately.

Since (17) requires the incidence angle and [10] and [11]
require the soil characteristics and temperature combination as
inputs, amy Ty in (24) are coef cients dependent on these
parameters. The merit of estimating m, from Ry, instead of
directly from radar backscattering is that all the coef cients in
(22) and (23) can remain constant for any soil characteristic and
temperature combination in the presence of the same incidence
angle and frequency.

The scatter plots and rmse of estimated Rpn/m, versus
measured Rnn/my are illustrated in Section V.

IV. EXPERIMENTAL AREA, DATA, AND SOFTWARE

Jet Propulsion Laboratory/Airborne Synthetic Aperture
Radar (AIRSAR) L-band PolSAR data acquired in Soil Mois-
ture Experiment 2003 (SMEXO03) are used to validate the effec-
tiveness of the proposed method. We picked out all the bare soil
sites (Fig. 4) around the Little Washita watershed in southern
Oklahoma from July 3 to July 15 with two-day intervals whose
hrms ranges from 0.9 to 2.6 cm and m,, ranges from 0.08 to
0.26 cm3/cm?3. Six different scenes of AIRSAR polarimetric
data were collected over south Oklahoma per ight day [18].
A total of 16 scenes of E W and W E azimuth directions
which covered the two bare soil experimental elds of Little
Washita were processed because soil characteristic, moisture,
and roughness are measured only there. AIRSAR L-band po-
larimetric MLC data are used in this study. Since C-band is
not as sensitive to terrain slope as L- or P-band [1] and the
wavelength of P-band is too long to match the ground moisture
measurement in SMEXO03, we only employed the proposed

Fig. 5. Orientation angle map and its distribution. (a) (d) Orientation angle
map calculated from P/L/C band PoISAR and DEM of the same random chosen
area. Filtering by ina5 5 window, the rmsds of (a) versus (d), (b) versus (d),
and (c) versus (d) are 6.1 , 6.9 , and 17.3 , respectively, while their mean
differences are 0.07 , 0.10 , and 2.17 . (e) is the orientation angle histograms
of (a) (e). () is the orientation angle histogram of the experimental elds.

method on the L-band AIRSAR data. First, MLC data are
extracted, ltered, and decomposed by PolSARPro 4.0 down-
loaded from the website of European Space Agency. Orienta-
tion angle elimination is performed, and geometric recti cation
is then conducted on the nal result. Finally, the compensated
data and Itered data were input to the proposed model to
estimate the soil dielectric and moisture, respectively.
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Fig. 6.
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Measured Rp/my versus model-estimated Rpn/my. (2) and (c) are measured Rp/my versus model-estimated R /my, from  Itered SAR data.

(b) and (d) are measured Rpn/my, versus model-estimated Rpn/my, respectively.

The details were described in Section V.

V. VALIDATION

It is important to validate the effectiveness of orientation
angle retrieval algorithm, as demonstrated in Fig. 5, before
the compensation. In Fig. 5(@) (c), P/L/C band PolSAR data
were used to calculate the orientation angle independently. In
Fig. 5(d), the orientation angle was calculated from DEM using
(A4) in [1]. Then, Fig. 5(a) (c) is compared with Fig. 5(d),
which is calculated from National Elevation Dataset 30 m DEM
and treated as the ground truth. The rms differences (rmsds)
of (a) versus (d) and (b) versus (d) are 6.1 and 6.7 , which
are subtle while that of (c) versus (d) is 19.3 and thus not
acceptable. This result means that the orientation angle results
calculated from P- and L-bands are consistent to that from
DEM, and the same terrain effect is obvious through (a), (b),
and (d). The result from L-band shows a bit more variance

and noise than that from P-band. It may be attributed to the
fact that the L-band is more sensitive to small-scale slopes
while P-band is less easily affected by the land surface cover.
However, the orientation angle derived from C-band is too noisy
compare to that from DEM because it is more sensitive to
small-scale roughness than the macroterrain slope. Fig. 5(e)
con rms that the orientation angle distribution derived from
P/L bands is consistent to DEM-derived result in the same
area. Furthermore, compared to L-band, the histogram of the
orientation angle derived from P-band agrees a bit more with
that from DEM. However, at C-band, the histogram curve
deviates too much from that of DEM. Therefore, the employed
orientation angle estimation method works well at L /P bands
and lower frequency but may not apply to data at C-band
or higher frequency. This result is identical to the conclusion
part in [1]. Therefore, the orientation angle compensation is
performed solely at L-band which is more useful on surface
soil moisture estimation than P-band.
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It should be noted that 7 7 window polarimetric re ned
Lee lter [17], [19] is employed on the original polarimetric
data to reduce the speckle noise. By analyzing the visually
homogenous area, the equivalent number of looks of our ex-
perimental data is estimated to be 3.8. Cloude decomposition
was then applied to the Itered T3. The rst component of the
decomposed T3 is used to calculate the orientation angle by
(11), then it is converted to C3 according to (3.40) in [17].
In the bare soil case, we observed that the rst component
of Cloude decomposition usually exceeds 95% of the original
power thus keeping most of its characteristics. Finally, orien-
tation calibration is performed on C3 by (5) and (6). ﬁh and

9, are then extracted from Cj. After geometric recti cation,
the comparison between AIEM predictions and processed SAR
data can be conducted. 2, and O, yield rmses of 1.95 and
1.38 dB, respectively, without the compensation step. Using
the orientation angle compensation, the rmses of 2, and 2,
are signi cantly reduced to 1.30 and 1.15 dB, respectively.
The histogram of orientation angle of the experimental elds is
shown in Fig. 5(f). Nonzero orientation angle pixels exist due to
the terrain and the plough. The copolarized backscattering data
before and after applying the orientation angle compensation
method are used in (20) together with the measured soil rough-
ness parameters to solve for soil dielectric/moisture. Scatter
plots in Fig. 6(a) and (b) are measured Ry versus model-
estimated R, from SAR data after Itering and orientation
angle calibration, respectively, and Fig. 6(c) and (d) shows the
measured m, versus model-predicted m,, from SAR data after

Itering and orientation angle calibration, respectively. As a
result, the rmse of estimated Ry is reduced from 0.075 to
0.054, and the rmse of soil moisture is reduced from 0.056 to
0.041.

VI. CONCLUSION

In this paper, orientation angle compensation has been per-
formed on AIRSAR L-band fully polarimetric data. Its effec-
tiveness and signi cance are validated by the proposed soil
moisture estimation model. The accuracy of soil moisture es-
timation is signi cantly improved by the proposed procedure.
In conclusion, we recommend performing orientation angle
compensation on low-frequency SAR data (lower or equal to
L-band) before retrieving bare soil moisture. However, it should
be noted that, at high frequency, e.g., C-band, the compensa-
tion may not be available because C-band or higher-frequency
SAR data are more sensitive to small-scale roughness than the
local slope. Because of orientation angle compensation, fully
PoISAR data can be better utilized to estimate soil mois-
ture than the dual- or single-polarized data on soil moisture
estimation.
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