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[1] Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN) is a satellite infrared-based algorithm that produces global
estimates of rainfall at resolutions of 0.25° x 0.25° and a half-hour. In this study the model
parameters of PERSIANN are routinely adjusted using coincident rainfall derived from the
Tropical Rainfall Measurement Mission Microwave Imager (TMI). The impact of such an
adjustment on capturing the diurnal variability of rainfall is examined for the Boreal
summer of 2002. General evaluations of the PERSIANN rainfall estimates with/without
TMI adjustment were conducted using U.S. daily gauge rainfall and nationwide radar
network (weather surveillance radar) 1988 Doppler data. The diurnal variability of
PERSIANN rainfall estimates with TMI adjustment is improved over those without TMI
adjustment. In particular, the amounts of afternoon and morning maximums in rainfall
diurnal cycles improved by 14.9% and 26%, respectively, and the original 2—3 hours of
time lag in the phase of diurnal cycles improved by 1-2 hours. In addition, the rainfall
estimate with TMI adjustment has higher correlation (0.75 versus 0.63) and reduced bias
(+8% versus —11%) at monthly 0.25° x 0.25° resolution than that without TMI
adjustment and consistently shows higher correlation (0.62 versus 0.51) and lower bias
(+22% versus —30%) at daily 0.25° x 0.25° scale. This study provides evidence that
the TMI, which measures instantaneous rain rates from the TRMM platform flying on a
non-Sun-synchronous orbit, enables PERSIANN to capture more realistic diurnal
variations of rainfall. This study also reveals the limitation of current satellite rainfall
estimation techniques in retrieving the rainfall diurnal features and suggests that further
investigation of precipitation generation in different periods of cloud life cycles might help
resolve this limitation.
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Manton [1998] summarized that the MW estimates provided
the best instantaneous results and that the IR-based esti-
mates produced the best long-term results. To take advan-

1. Introduction

[2] Satellite-based precipitation estimation schemes have

been developed using microwave (MW)-based, infrared
(IR)-based, and combined IR/MW techniques [Anagnostou
et al., 1999]. MW observations detect information that is
more physically related to precipitation than the longwave
(11 pm) IR data, the cloud-top brightness temperature.
However, MW instruments currently only reside on low-
altitude, polar-orbiting, or other nongeostationary orbiting
platforms; thus the low sampling frequency is a major
drawback. In contrast, IR data are available almost contin-
uously over time from the geostationary satellites. Ebert and
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tage of the accuracy of the instantaneous MW estimates and
the high temporal resolution of IR estimates, a number of
researchers developed techniques that blend the strengths
of them to yield combined IR/MW rainfall estimates
[Kummerow and Giglio, 1995; Huffiman et al., 1995; Xie
and Arkin, 1996; Xu et al., 1999; Bellerby et al., 2000;
Huffman et al., 2001; Miller et al., 2001; Kuligowski,
2002; Hong et al., 2003; Kidd et al., 2003; Hong et al.,
2004; Joyce et al., 2004]. PERSIANN, initially developed
as a geostationary IR-based algorithm by Hsu et al. [1997],
has been operationally producing estimates of rainfall at
elemental resolutions of 0.25° x 0.25° and a half-hour after
adjustment by using the instantaneous rain rate estimates
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Figure 1.

from the Tropical Rainfall Measurement Mission (TRMM)
Microwave Imager (TMI; Sorooshian et al. [2000]). The
progress in remote sensing for rainfall estimation has
facilitated the investigation of the quality and applicability
of these rainfall products. Identifying the diurnal cycle of
rainfall from satellite rainfall estimates is an issue with
theoretical and practical significance [Adler et al., 1994;
Anagnostou et al., 1999; Sorooshian et al., 2002; Negri et
al., 2002; Nesbitt and Zipser, 2003].

[3] In this paper we compare the rainfall diurnal cycle
results from the PERSIANN system with/without the TMI
adjustment. Unlike other studies that aim to reveal the
features of the rainfall diurnal cycle, the primary goal of
this study is to evaluate the quality of rainfall diurnal
variability derived from two different stages of PERSIANN
outputs: IR-based precipitation estimates from the simula-
tion mode (preadjustment) and the IR/TMI estimates from
the update mode (postadjustment). As shown in Figure 1,
one of the special features of PERSIANN is that it is
designed to run in either the simulation mode or the update
mode. Running in the simulation mode, the PERSIANN
estimates rainfall based on the high-frequency (48 per day)
thermal IR images provided by the geostationary satellites.
The update mode enables PERSIANN to combine the high-
frequency IR and the low-frequency TMI instantaneous
rainfall measurements to estimate rainfall. Hereafter, the
simulation mode (preadjustment) and update mode
(postadjustment) are referred to as IR/fixed (or based)
PERSIANN and IR/TMI PERSIANN, respectively.

PERSIANN model structure and input-output variables.

[4] The data processing procedure is discussed in
section 2, followed by the validation of PERSIANN in
section 3. In section 4, the diurnal features of rain intensity
derived from IR/TMI and IR/fixed PERSIANN products are
compared. Section 5 includes conclusions and discussions
of future work.

2. Data and Methodology
2.1. PERSIANN System

[s] The PERSIANN system is a computer-based neural
network algorithm that uses the infrared brightness tem-
perature of clouds from geostationary satellites as the basic
input variables to retrieve surface rain rates at elemental
resolutions of 0.25° x 0.25° and a half-hour. Three
specific features have been designed in PERSIANN to
improve the estimation. First, the input variables for
PERSIANN include a set of IR image features within a
moving window of 5 x 5 pixels surrounding the central
target pixel and also the underlying surface type (land or
water) (Figure 1). Second, the PERSIANN system classifies
the input variables into a number of groups and sets up
different submodels (mapping functions) for these groups to
correlate the input variables to the output rain rate through a
calibration procedure. Third, the PERSIANN includes an
adaptive procedure (see Figure 1) that enables the submo-
dels to make self-adjustments according to the feedback
from its estimation error (detected from the TMI rain rate)
during the operation. For more information, please refer to
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Data Coverage and Resolution
Input
IR images 35°S-35°N, 0.25° x 0.25°, half-hourly
TMI rain rate 35°S—35°N, 0.25° x 0.25°, instantaneous”
Output
IR/fixed rain rate 35°S—-35°N, 0.25° x 0.25°, half-hourly
IR/TMI rain rate 35°S—-35°N, 0.25° x 0.25°, half-hourly
Validation

WSR-88D
U.S. rain gauge

20°N—-50°N and 120°W-65°W, 0.25° x 0.25°, hourly
20°N—50°N and 140°W-60°W, 0.25° x 0.25°, daily

“The non-Sun-synchronous TMI data come in at nonperiodic schedule.

the earlier publications of Hsu et al. [1997], Sorooshian et
al. [2000], and Hsu et al. [2002].

2.2. Data Processing

[6] The data used and produced in this study are listed in
Table 1. Notably, all of the data are processed at the
PERSIANN elemental resolution (0.25° x 0.25°). The IR
data are obtained from the NOAA Climate Prediction
Center (CPC), which provides global half-hour IR data with
a parallax correction for geometric misnavigation of high
cloud, corrections of large zenith angles, midpoint interpo-
lation of overlapping satellite coverage, and re-mapping of
spatial scales [Janowiak et al., 2001]. The TMI is a nine-
channel passive microwave radiometer that operates at five
frequencies similar to the frequencies of the Special Sensor
Microwave/Imager (SSM/I) instrument. Rainfall estimates
from SSM/I onboard Sun-synchronous polar-orbiting satel-
lites are subject to bias in regions where the diurnal cycle of
rainfall is pronounced [Bellerby et al., 2000]. However, the
TRMM platform for precipitation monitoring flies in a non-
Sun-synchronous orbit, which changes the local overpass
time and can provide sampling for a complete diurnal cycle
over periods of a month or longer; therefore the diurnal
estimation is probably better than that from SSM/I over
some extended areas [Kummerow et al., 1998]. In addition,
TMI is designed with improved instrument quality and
higher spatial resolution so that the TRMM microwave
rainfall data are considered superior to the SSM/I estimates
and used to improve the quality of the IR/fixed estimates.

[7] The initial parameter values of PERSIANN are
trained using 1-year (1998) coincident IR and radar rainfall
data over the Florida region, where the radar rainfall has
good coverage and quality [Maddox et al., 2002]. After-
ward, the PERSIANN system can operate in two different
modes: simulation (IR/fixed) and update (IR/TMI) mode. In
the simulation mode the parameters of PERSIANN are
fixed. In the update mode the PERSIANN parameters are
sequentially adjusted with a small step size (v = 0.05)
according to the feedback of estimation error detected from
the coregistered TMI rain rates (see equation (AS5) for
details). They are temporally adjusted whenever TMI rain
rates are available.

[8] Therefore two sets of rainfall products in year 2002
are generated through the IR/fixed and IR/TMI techniques,
respectively (Figure 1). The two modes (IR/fixed versus IR/
TMI) have the same initial configurations and the same
input of localized IR data in year 2002. The major differ-

ence between the two products is that one is adjusted by
coregistered TMI observations while the other is not.

[¢] To reduce the processing time, the estimation domain
(50°S—50°N) of PERSIANN is divided into 96 equally
sized rectangular areas (15° x 70° latitude-longitude with
overlap on edges to assure smooth transitions between
adjacent regions) for parallel computation. For each of the
subregions, the self-organizing feature mapping clustering
algorithm in PERSIANN system establishes 255 sets of
input-output mapping coefficients [Sorooshian et al., 2002].
As aresult, 24480 (96 x 255) sets of coefficients, instead of
a single set, were used to generate global rainfall estimates.
The information (including diurnal features) extracted from
input data is implicitly carried by different sets of the input-
output mapping coefficients. For example, the afternoon
convective clouds and morning stratiform clouds over land
would be classified into different sets of input-output
mapping coefficients because of their distinctive features.
Furthermore, each set of the coefficients makes its own self-
adjustment according to the feedback from its estimation
error (detected from the TMI rain rate) during the adaptive
process (see Figure 1). Not all of the sets of coefficients are
observed at every time of day, so certain sets might only be
calibrated or adjusted at certain times of day. Therefore the
clustering and adaptive procedure enable the PERSIANN
system to differentiate and retrieve the diurnal information
embedded in geostationary IR cloud imagery and non-Sun-
synchronous TMI observations.

[10] The current study area is restricted in the TMI
coverage domain of 35°S—35°N, and the validation area
is limited to the U.S. continent, where the National Weather
Service (NWS) Weather Surveillance Radar-1988 Doppler
(WSR-88D) radar and rain gauge data are available.

2.3. Computation of Rainfall Diurnal Cycle

[11] The elemental rain rates (a half-hour and 0.25° x
0.25°) from PERSIANN are first transferred from UTC to
the local solar time (LST) according to the geographical
location of each grid box. The rainfall diurnal cycle is
defined as the monthly mean (7;) of half-hour rainfall for
each 1° x 1° grid box in the study area.

iinﬂ mm.h~!

__1
mp ‘= =

where r;;, = rain rate at the elemental PERSIANN pixel (a
half-hour and 0.25° x 0.25°), i is day of the month m; j is
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Figure 2. The WSR-88D radar coverage (shading area)
and TRMM coverage (under dashed line). Note that the four
numbered (1—-4) and lettered (A—B) grids from different
climatic regions are used for algorithm validation and
comparison of rainfall diurnal variability.

time index of half-hour rainfall; and £ is location index of
elemental pixel in the 1° x 1° grid box (p = 16). In the ideal
case without missing data, a 1° x 1° grid box in I-hour
interval for a month of 30 days has 960 (16 x 2 x 30)
elemental rainfall samples to calculate the monthly average.
For the purpose of quality control, only a grid box with
more than 80% of the maximum possible rainfall samples is
used in the study; otherwise a flag of “missing data” is
applied to the grid box.

3. Limited Validation

[12] The PERSIANN rainfall estimates are validated
using rain gauge and radar data in sections 3.1 and 3.2,
respectively. The validation period covers the summer of
2002 (June, July, and August) and the spatial domain (shade
region) is shown in Figure 2. Note that grids with zero
rainfall also are included for the daily and monthly compar-
isons. Definitions for the statistical indices, correlation
(CORR), root-mean square error (RMSE), bias, skill score,
probability of detection (POD), and false alarm ratio (FAR)
are adapted from the report of the third Algorithm Inter-
comparison Project of the Global Precipitation Climatology
Project (GPCP; Ebert [1996]).

3.1. Daily Rainfall

[13] The rain gauge data used in the validation are the
Climate Prediction Center (CPC) real-time daily gauge
analysis (see www.cpc.ncep.noaa.gov/research _papers/
ncep_cpc_atlas/7/index.html), which is composed of over
7000 stations. These data have already undergone limited
automated quality control (duplicate station check, buddy
check, and standard deviation check against climatology)
and have been processed, using objective analysis interpo-
lation, into 0.25° grid mesh covering the continental United
States and Mexico. For this study, some additional quality
control was conducted by applying a land/water mask
to eliminate regions of missing gauge data in offshore
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grid boxes. In addition, only those days with more than
400 effective grid data were used in the comparison (about
5% of the data eliminated). Note that the validation domain
also is limited within the TMI coverage.

[14] Time series of statistical comparisons of the
PERSIANN estimates are illustrated in Figure 3 and Table 2.
The IR/TMI estimates outperform IR/fixed estimates in
terms of correlation, skill score, POD, and FAR in general,
but show higher root-mean square error and bias in a few
time periods. The positive bias of the IR/TMI estimates
(0.51) referring to the rain gauge data is largely due to the
bias of the TMI retrieval technique [Negri et al., 2002].
Kummerow et al. [2001] reported a positive bias of 19% over
all of the land in the tropical region for the retrieval
technique applied to TMI data. The number becomes slightly
higher (22%) in this study, after the PERSIANN parameters
adjustment using the TMI data. In contrast, the IR/fixed data
underestimate rain gauge rainfall by 30%. However, the
variability of the skill score shown in Figure 3 suggests that
the sequential training approach might suffer from the
deficiency of the TMI samples. One way to cope with this
may be to enlarge the space domain of training samples.

3.2. Monthly Rainfall

[15] The stage III hourly radar composites, obtained from
the National Weather Service’s network of operation WSR-
88D by the National Centers for Environmental Prediction
(NCEP), provide hourly digital precipitation (HDP) radar
rainfall estimates at approximately 4 x 4 km? covering the
continental United States and its coastal regions [Maddox et
al., 2002]. This high spatial and temporal resolution rainfall
product provides data useful for verification of satellite
rainfall algorithms.

[16] The rainfall estimates derived from IR/TMI and IR/
fixed PERSIANN are compared to radar rainfall. Figure 4
(top two panels) shows the scatterplots of seasonally (sum-
mer 2002) averaged hourly rain rates (at every local solar
hour) over four selected grids (shown in Figure 2). The
validation statistics of IR/TMI estimates outperform the IR/
fixed data with higher correlation (0.97 versus 0.94), skill
score (0.84 versus 0.76), and lower error (0.07 versus 0.11).

[17] Figure 4 (bottom two panels) shows the scatterplots
of monthly (July 2002) rainfall over a region of 30°N—36°N
and 115°W—-105°W. The IR/fixed estimates underestimate
heavy rainfall but show lower standard deviation (27 versus
44) and lower root-mean square error (31 versus 37 mm
month™") than the IR/TMI estimates. However, the latter
demonstrates better rainfall ratio (1.08 versus 0.89) and
higher correlation (0.75 versus 0.63). It is worth mentioning
that at the monthly scale the IR/TMI rainfall estimation is
not necessarily better than IR/fixed values in terms of root-
mean square error, but the routine adjustment of instanta-
neous TMI rainfall into PERSIANN estimation substantially
improves the correlation by 12%, particularly in regions of
high rain intensity. The scatterplots given in Figure 4 also
show that the IR/fixed estimation has a tendency to sys-
tematically underestimate heavy rainfall.

4. Diurnal Cycle of Rainfall

[18] Monthly mean hourly rainfall was computed at the
0.25° x 0.25° resolution and aggregated into a 1° x 1° grid
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Figure 3. Validation of PERSIANN estimates with U.S. daily rain gauge data at 0.25° x 0.25°
resolution over the continental United States (within TRMM coverage) during June, July, and August

2002.

for depicting the rainfall diurnal cycle. Section 4.1 compares
the diurnal variations derived from the IR/TMI and the IR/
fixed data, and section 4.2 briefly describes the diurnal
variability of tropical rainfall from the IR/TMI estimates.

4.1. Comparison of Rainfall Diurnal Variability

[19] Because of the lack of ground rainfall observation
with high sampling over the global tropic region, the diurnal
variability from the IR/TMI and IR/fixed estimates was
compared to WSR-88D data over the continental United
States. Note that the radar rainfall also suffers from varying
errors (view angle, atmospheric attenuation, the parameter-
ization of Z-R function, and so forth). Additionally, radar
does not give direct measurement of precipitation reaching
the surface, which might introduce uncertainty in estimates
of the diurnal cycle of rainfall.
4.1.1. Diurnal Variability Over Land and Coastal
Regions

[20] The following analysis of diurnal variation is based
on a 1° grid aggregated from 0.25° elemental grids. To take
into account the availability of radar data, the coastal area is
therefore determined as the 1° grids mixed with land and sea

0.25° subgrids within the area of WSR-88D radar coverage
(see Figure 2).

[21] Figures 5a—5b show the diurnal variation of rain
rates over land and coastal areas within the region of 20°N—
36°N and 130°W—65°W. The phases of PERSIANN diurnal
cycles consistently lag behind the radar cycle. Over land,
the IR/TMI diurnal cycle shows a l-hour lag of the
maximum peak, while the IR/fixed diurnal cycle lags
behind 2 hours, missing the heavy rainfall occurring in
the early stages of convection. Negri et al. [2002] also
reported a 3-hour lag in the GOES precipitation index (GPI)
diurnal cycle. They explained that the IR-based technique
determines the highest rain rates from the coldest IR cloud-
top brightness temperatures; however, the actual peak rain
might already fall before the convective cloud reaches its
maximum height.

[22] As shown in Table 3 and Figure 5, the IR/TMI
technique captures the phase and amplitude of the radar
diurnal cycle better than the IR/fixed approach over both the
land and coastal areas. Note that the amplitude is defined as
the ratio of the peak rain rate to the mean of diurnal rainfall.
In particular, the amplitudes of the diurnal cycle derived

Table 2. Validation Statistics of PERSIANN Estimates With U.S. Daily Rain Gauge Data®

Correlation Skill RMSE, mm day ' Bias, mm day ' POD FAR
IR/TMI 0.62 0.64 5.82 0.51 0.69 0.27
IR/fixed 0.51 0.56 5.86 —0.69 0.57 0.34

?Averaged from Figure 3. Note that the mean daily rainfall from IR/TMI data is 2.29 mm day ™ .

1
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Figure 4. The top two panels show scatterplots of monthly averaged hourly rain rates (at local solar
hour) derived from IR/TMI and IR/fixed PERSIANN compared to WSR-88D rainfall over the summer
season at the four selected locations (Figure 2). The bottom two panels show scatterplots of monthly (July

2002) rainfall derived from IR/TMI, IR/fixed
30°N-36°N and 115°W—105°W.
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Figure 5. Diurnal variation of rainfall intensity from different data sets over (a) land and (b) over
coastal areas. Note that the diurnal variation is averaged at 1° x 1° grids and the coastal areas is defined
as the transitional grids between land and ocean where WSR-88D radar data are also available.
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Table 3. Statistics of Diurnal Variation of Rain Rates From Two Data Sets Over the Land and the Coastal Areas®
Land (150 Grids of 1° x 1°) Coastal Areas (15 Grids of 1° x 1°)
Correlation  Mean, mm  Maximum, hr™! SD Amplitude  Correlation ~ Mean, mm  Maximum, hr! SD Amplitude
Radar N/A 0.097 0.165 0.037 1.701 N/A 0.082 0.181 0.037 2.207
IR/fixed 0.817 0.078 0.113 0.028 1.449 0.715 0.054 0.072 0.013 1.333
IR/TMI 0.874 0.108 0.184 0.041 1.703 0.786 0.086 0.164 0.038 1.907

*Note that the amplitude is defined as the ratio of peak to mean in the rainfall diurnal cycle. SD, standard deviation; N/A, not applicable.

from radar and IR/TMI rainfall are closer over land (1.701
versus 1.703) and slightly different over the coastal arca
(2.207 versus 1.907), while the amplitude of the IR/fixed
cycle is considerably smaller over the land (1.449) and over
the coastal area (1.333). The IR/TMI rainfall data improve,
compared to the IR/fixed estimates, the depiction of the
amplitude of rainfall diurnal cycle by 14.9% over land and
26% over coastal areas. The IR/TMI also has the standard
deviation (SD) of diurnal rain rates closer to the radar data.

[23] Table 3 shows that the IR/TMI overestimates the
mean of rainfall diurnal variation by 11% (5%) over land
(coastal areas), while IR/fixed data underestimate by 19%
(34%) over land (coastal areas). This restates that the TMI
adjustment could correct the underestimation of IR/fixed
estimates but also introduces positive bias. Note that the

results over coastal regions should be viewed with caution
because of the small number of grids.
4.1.2. Diurnal Variability of Rainfall Over Four
Selected Grids

[24] Figures 6a—6d show the diurnal cycle of seasonally
(JJA) averaged rainfall for four 1° x 1° grids in different
climate regions (see Figure 2 for the locations). Note the
distinct differences in the diurnal rainfall variations among
these grids. Grid 1 is located over the Atlantic Ocean and
exhibits a pattern of diurnal cycle over the ocean (Figure 6a).
Grids 2—4 (Figures 6b—6d) belong to a land pattern,
characterized by larger amplitudes during the afternoon
through midnight but narrower duration of high rainfall.
Grid 2, located over Florida, exhibits the highest peak of
diurnal rain intensities (1.3 mm hr™"), while grid 4, located

(a) Diurnal variation of rain rate at Grid 1: 30N-31N and 78W-79W lat/long
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(b) Diurnal variation of rain rate at Grid 2: 26N—-27N and 80W-81W lat/long
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Figure 6. Comparison of diurnal variation of rainfall derived from WSR-88D radar, IR/TMI, and IR/
fixed PERSIANN system over the summer season (JJA) (a—d) at four selected locations shown in

Figure 2.
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Table 4. Statistics of Diurnal Variation of Rain Rates From Selected Grids (1° x 1°)

Maximum, mm hr™! Mean, mm hr ! SD
Grid IR/TMI IR/Fixed Radar IR/TMI IR/Fixed Radar IR/TMI IR/Fixed Radar
1 0.60 0.356 0.52 0.32 0.24 0.31 0.18 0.07 0.14
2 1.30 0.76 1.15 0.36 0.35 0.36 0.42 0.19 0.36
3 0.28 0.21 0.33 0.12 0.11 0.13 0.095 0.053 0.010
4 0.20 0.14 0.19 0.074 0.071 0.073 0.075 0.040 0.069
Mean 0.595 0.366 0.547 0.218 0.198 0.220 0.192 0.088 0.144

in a semiarid region, shows a smaller peak (0.20 mm hr ")
and much lower rainfall variations throughout the day.
Figure 6 illustrates that the IR/TMI rainfall in the four grids
shows improvement in the depiction of the diurnal variabil-
ity by more closely following the diurnal curves derived
from WSR-88D data. Grids 1 and 4 also show that IR/TMI
reduces the lag time of maximum peaks by 1 to 2 hours.

[25] Table 4 lists the mean of the hourly rain rates of the
four grids for the IR/TMI (0.218 mm hr—!). It shows lower
bias than the IR/fixed rainfall (0.198 mm hr~") compared to
radar data (0.220 mm hr™'). The means of the maximum
rain rates of the four grids are 0.595, 0.366, and 0.547 mm
hr ! for the IR/TMI, IR/fixed, and radar, respectively. The
amplitude of the diurnal cycle from the IR/fixed rainfall is
considerably less than that of the IR/TMI rainfall, varying
by a ratio of 1.625:1.
4.1.3. Diurnal Variation of Rainfall From Grids
Without Ground Observations

[26] For regions without reliable observation of hourly
rainfall, it is expected that the IR/TMI PERSIANN will
capture the diurnal variation of rainfall better than the IR/
fixed PERSIANN. Two grids, A (16°N—17°N, 91°W—

92°W) and B (16°N—17°N and 99°W-100°W), were
selected (see Figure 2) for this purpose. Similar to the grid
of Figure 6b in Florida, grid A (Figure 7a) exhibits a land
pattern diurnal cycle with larger amplitude from the IR/TMI
than from the IR/fixed data. Figure 7b shows grid B is an
ocean pattern similar to the grid of Figure 6a for the Atlantic
coast. As for the diurnal rainfall pattern over land, the IR/
TMI data in grid A exhibit strong daytime convective
rainfall that begins around local noon time and extends
through late night with 14% of the rain falling at peak time
LST 1700. However, the IR/fixed estimates follow the same
shape of diurnal curve but only with 9% of rain falling at the
same peak time. As for the diurnal rainfall pattern of grid B
over the ocean, both estimates show weaker amplitude of
maximum rainfall but longer duration of peak time, starting
in the early morning through local noontime. For grid B, 9%
of the total rainfall concentrates at a peak hour from the IR/
TMI data, while only 6% falls at a peak time from the IR/
fixed data. The IR/TMI rainfall demonstrates stronger
diurnal variability of rainfall with higher maximum and
lower minimum in both grids. Quantitatively, the IR/TMI
data demonstrate 3—5 percentage stronger amplitude of

(a) Diurnal variation of rain rate at Grid A: 16N-17N and 91W-92W lat/long

Bar: IRITMI
Line: IRfixed

Rain rate (mm/hr)

6 8 10

(b) Diurnal variation of rain rate at Grid B: 16N-17N and

12

T T T T T T

14 16 18 20 22 24
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]
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0.4
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Figure 7. Diurnal variation of rainfall from with/without TMI adjustment over the summer season (JJA)

at grid A (a) land and grid B (b) ocean.
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peak rainfall than the IR/fixed data after normalization in
these two grids.

4.2. Seasonal Signals of Diurnal Variability of Tropical
Rainfall

[27] In comparison against WSR-88D observations, the
incorporation of TMI-derived instantaneous rainfall mea-
surements into the PERSIANN system improves the esti-
mation of the key attributes of diurnal variability of rainfall,
namely the amplitude and the duration of maximum
rainfall.

[28] In this section, IR/TMI PERSIANN global rainfall
(35°S—35°N) for the year 2002 has been processed into
1° x 1° and 3-hour resolutions at local solar time for retrieval
of the diurnal cycle over the boreal summer months of
June, July, and August (JJA) and the winter months of
December, January, and February (DJF), respectively.

[20] As shown in Figure 8a, boreal summer (JJA/austral
winter) average of 3-hour rain rates indicates pronounced
diurnal variability over western Mexico, Central America,
the eastern Pacific Ocean, Southeast Asia, and midwestern
Africa. All of these regions are characterized by marked
minimum in the midmorning, maximum in the afternoon
over land, and early morning maximum over the oceans.
During the DJF season (austral summer) of the Southern
Hemisphere (Figure 8b), Brazil and northern South America
exhibit strong daytime maximum of diurnal rainfall over
land, slowly decreasing through the late night. This result
agrees with the finding of Anagnostou et al. [1999] and
Negri et al. [2002] with respect to location and orientation
of the major features. Northern Australia exhibits peak of
diurnal rainfall occurring during midafternoon (1500—
1800 LST) over land and early morning convection
developing between 0300 and 0600 offshore. In general,
land areas have higher amplitude of the diurnal cycle than
the ocean due to the stronger and more frequently
convective processes mostly attributed by afternoon heat-
ing over the land surface. These seasonally averaged
signals of rainfall diurnal variability are in agreement, in
a broad term, with previous works [Meisner and Arkin,
1987; Janowiak et al., 1994; Dai, 2001; Sorooshian et al.,
2002; Nesbitt and Zipser, 2003].

5. Summary and Discussion

[30] Currently, many research teams are working on
improving the accuracy and the spatial and temporal reso-
lutions of satellite rainfall estimates for meteorological and
hydrological applications. The PERSIANN system has been
continuously improved in this direction [Hsu et al., 1997,
1999; Sorooshian et al., 2000]. The evaluation of the
PERSIANN rainfall products reported here, as well as a
previous publication [Sorooshian et al., 2002], indicates that
substantial progress has been made in the combination of
multiple rainfall data sources achieved through the function
of adaptability of PERSIANN network.

[31] In this study, two running modes of PERSIANN,
namely simulation and update, are examined. In the simu-
lation mode, the system transforms IR cloud-image infor-
mation to rainfall through the fixed model parameters,
dubbed IR/fixed PERSIANN. In the update mode, the
parameters are routinely adjusted by using the coincident
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TMI instantaneous rain rates, namely IR/TMI PERSIANN.
Consequently, two sets of 1 year (January to December
2002) of rainfall data at half-hourly 0.25° x 0.25° resolu-
tion are generated from the two modes. Validation of these
two data sets in comparison with rain gauge and radar
observation shows that: (1) the IR/fixed PERSIANN esti-
mation has a tendency to underestimate heavy rainfall,
while the IR/TMI estimation provides better estimates for
high rainfall; however, the improvement for low rainfall is
marginal; (2) compared to rain gauge and radar data, the IR/
TMI estimate has higher correlation (0.62 versus 0.51) and
lower bias ratio (+22% versus —30%) than the IR/fixed
estimate at daily 0.25° x 0.25° scale; it consistently
demonstrates higher correlation (0.75 versus 0.63) and
lower bias ratio (+8% versus —11%) at monthly 0.25° x
0.25° resolution; and (3) compared to U.S. gauge informa-
tion, results show that the biased TMI retrieval technique
[Negri et al., 2002] introduces positive bias (22%) into the
IR/TMI estimates, in contrast to the negative bias (—30%)
of IR/fixed estimates.

[32] This analysis focuses on the evaluation of the quality
of rainfall diurnal variability derived from the two different
data products. The diurnal analysis of global tropical rainfall
illustrates that the IR/TMI rainfall estimation better captures
the characteristics of diurnal variability of rainfall than the
IR/fixed estimation. Specific conclusions are as follows:

[33] 1. There is a strong tendency for IR/fixed data to
underestimate the magnitude of rainfall diurnal variation,
particularly for the peak of the diurnal cycle. However, the
IR/TMI estimates show the ability to correct the tendency
by 14.9% over land and 26% over coastal areas. This
indicates that the routine adjustment from TMI rainfall
measurements facilitates the PERSIANN to better retrieve
the diurnal feature of precipitation.

[34] 2. Generally, there is a 1-3 hour lag of peak of the
diurnal cycle for the two data sets (Figure 5a). Figures 6d
and 7b illustrate that the IR/TMI estimates also improve
phase of the diurnal cycle by reducing the lag time of peak
from 2—3 hours in the IR/fixed diurnal cycles to 1—2 hours.

[35] This investigation shows the limitation of satellite
IR/fixed rainfall estimation. In general, nonlinear relation-
ships exist between cloud IR data and surface rain rates. The
assumption in [R/fixed algorithms, that the colder the cloud-
top temperature, the higher the surface rain rate, is not
always true [Arkin and Meisner, 1987; Adler et al., 1994].
More importantly, the IR data in fact represent the diurnal
variation of cloudiness; thus the IR-only information re-
trieval algorithm has limited capability of overcoming the
contamination by very cold anvil cirrus and the difficulty in
detecting warm cloud rainfall, which particularly affects the
phase of the rainfall diurnal cycle. For example, convective
clouds exhibit a stronger tendency to give rise to heavy
rainfall during the developing stage than during dissipating
periods; this can often lead to an erroneous assignment of
precipitation to cold nonprecipitating clouds or the missing
of significant rainfall from tropical or subtropical warm
clouds. The time lag of the peak rainfall in the diurnal cycle
indicates that the peak of convective rainfall may occur
before the convection reaches the highest level, suggesting
that further investigation of precipitation generation in
different periods of cloud life cycles would help resolve
this limitation.

9 of 13



D06102

35N

358

35N

358

35N

358

35N

358

35N

358

35N

358
0E

Figure 8a.
season (JJA).

HONG ET AL.: RAINFALL DIURNAL VARIABILITY FROM SATELLITE DATA

JJA Local time: 00—--02

JJA Local time: 06—-08

JJA Local time: 09—-11
2 e

JJA Local time: 12—-14

JJA Local time: 15—17

JJA Local time: 18——20

JJA Local time: 21—-23

30E B60E 90E 120E 150E 180 150w 120W 90w 60W 30W ow

o 0.2 0.4 0.6 o.8 1 mmhb?

Diurnal variation of global tropical rainfall from IR/TMI PERSIANN over the summer

10 of 13

D06102



D06102 HONG ET AL.: RAINFALL DIURNAL VARIABILITY FROM SATELLITE DATA D06102

DJF Local time: 00—-02
35N —

358

OE 30E BOE 90E 120E  150E 180 150W  120W 90W  BOW  30W  OW
DJF Local time: 12—=14

Figure 8b. Diurnal variation of global tropical rainfall from IR/TMI PERSIANN over the winter season
(DJF).

[36] Further improvements may also be achieved by Meteorological Satellite Program Special Sensor Micro-
using more microwave rainfall data for PERSIANN wave Imager (SSM/I), NOAA Advanced Microwave
parameter adjustment. With the possibility of global Sounding Unit (AMSU-B), and NASA EOS Aqua Ad-
passive microwave composite images from TMI, Defense vanced Microwave Scanning Radiometer (AMSR-E),
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the potential improvements in precipitation estimation
accuracy and in retrieval of the diurnal cycle by using
this global composite images to adjust PERSIANN net-
work parameters is also under investigation. At the time
of this writing, the last 3-year global rainfall products (at
elemental 0.25° x 0.25° and 30-min resolution) from the
PERSIANN algorithm, adjusted by TMI, SSM/I, and
AMSU-B rainfall observations, have been processed and
will be analyzed.

Appendix A: PERSIANN Network Training and
Recursive Update

Al. Training of the PERSIANN Network

[37] As with any other three-layer ANN network, PER-
SIANN consists of an input vector X = [xy, Xa,. . ., X,0] With
ng unit neural units, an SOFM hidden layer y = [y, y»,. - .,
V1] with n; node numbers, and the network output z = [z,
Z5,. .., Zn1], 1.€., rain rate. Defining weights w;; denotes the
weight connecting from the input node x; to the SOFM node
y; and weight v;; associates input x; and output data zj;
through the SOFM node ;.

[38] The weights w and v must be trained to group
input variables x into one cluster of y; they then produce
estimates of rainfall z. The training of the PERSIANN
network proceeds through two stages: unsupervised
SOFM training and a supervised linear optimization
procedure.

Al.1. Unsupervised SOFM Training

[39] The procedure for training the SOFM weights vec-
tors w is conducted as follows.
Al.1.1. Step 1

[40] Randomly initialize the w between values 0 and 1.
Al.1.2. Step 2

[41] For each input vector x;, the “distance” between the
normalized input vector and each hidden layer (SOFM)
node is calculated as follows:

0 0.5
dj = {Z(x,-—wj,-)z} i=1,...,n (A1)
i=1
Al.1.3. Step 3
[42] Select the winner node I such that
dC:min(dj), j=1,...,n5. (A2)
Al.1.4. Step 4

[43] Update the connection weights of all hidden nodes in
the neighborhood of the winning node according to the
iterative adjustment rule (the nodes outside €2.(m) remain
the same as before):

wii(m) = wji(m — 1) + n(m) [Xi — wji(m — 1)},if j € Qc(m);

otherwise wj;(m) = w;i(m) (A3)
where m is the training iteration index, n(m) is the learning
rate, and ().(m) defines the neighborhood size around the
winning node /... The initial settings of the learning rate m is
0.2—0.5 and the neighborhood size (2. is n;/2, i.e., half of
the SOFM node size. As the training proceeds, both the
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Q.(m) and m(m) progressively decrease until the values of
the weights w stabilize.

Al.2. Supervised Linear Optimization Procedure in
the Output Layer

[44] After the SOFM training, the linear equation (A4)
associates input and output data at node j, and the weights
v;; can be determined using a straightforward “‘supervised
learning™ strategy given concurrently collocated rainfall
observations.

n0
Z:E vix; if j=c; otherwise, z=0
=1

(A4)

A2. Adaptation of the PERSIANN System
(Update Mode)

[45] The procedure of training the weights w;; and v;; is
quite straightforward and is discussed above. Note that,
while the SOFM weights w;; must be trained off line, the
weights v; can be first initialized through off-line training
and then recursively updated by a sequential online training
procedure that makes small adjustments to the parameters in
the neighborhood of an active node through an error
feedback process using the Widrow-Hoff learning rule.
The weight update is taken from the negative gradient
direction of matching error associated with the update
weight, v;;, as shown in equation (AS).

= Vjol-ld + Ntobs — Zsim|y; if = otherwise, Vit = j?l.ld

(AS)

new
Ji

where f,,, is observed rainfall such as microwave or
ground-truth data, z;,, is the simulated PERSIANN rainfall
estimates without adjustment, and v is the learning rate
between 0 and 1. The value of y; is dependent on the
competition of the SOFM layer. A value of 1.0 is assigned
to the winner node, /., which has minimum distance
between inputs, x, and the SOFM connection weight, w.
The value of y; is 0.0 in all nodes other than the
neighborhood of the winner node. As a result, only the
weights at j = [ and within its neighborhood €2 are adjusted,;
other weights remain at the previous values.

[46] As a result, the simulation mode of PERSIANN
generates rainfall estimates with the fixed network param-
eters using an off-line training procedure, while the update
mode produces rainfall with the adjusted parameters
through an online recursive updating procedure. This
process of recursive updating enables the estimates of
PERSIANN rainfall to track and adjust to temporal and
spatial variation in the rainfall distribution.
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