Observed and simulated hydroclimatology using distributed hydrologic model from in-situ and multi-satellite remote sensing datasets in Lake Victoria region in East Africa

S. I. Khan1, P. Adhikari1, Y. Hong1, H. Vergara1, T. Grout1, R. F. Adler2,3, F. Policelli2, D. Irwin4, T. Korne5, and L. Okello5

1School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
4NASA Marshall Space Flight Center, Huntsville, AL, USA
African Regional Centre for Mapping of Resources for Development (RCMRD), Nairobi, Kenya

Received: 29 June 2010 – Accepted: 12 July 2010 – Published: 22 July 2010

Correspondence to: Y. Hong (yanghong@ou.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Floods and droughts are common, recurring natural hazards in East African nations. Studies of hydro-climatology at daily, seasonal, and annual time scale is an important in understanding and ultimately minimizing the impacts of such hazards. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10-year peak discharges, for the entire study period showed that more years since the mid 1990’s have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia Basin. The spatiotemporal variability of the water cycle components were quantified using a physically-based, distributed hydrologic model, with in-situ and multi-satellite remote sensing datasets. Moreover, the hydrologic capability of remote sensing data such as TRMM-3B42V6 was tested in terms of reconstruction of the water cycle components. The spatial distribution and time series of modeling results for precipitation (P), evapotranspiration (ET), and change in storage (dS/dt) showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to early June. The hydrologic model captured the spatial variability of the soil moisture storage. The spatially distributed model inputs, states, and outputs, were found to be useful for understanding the hydrologic behavior at the catchment scale. Relatively high flows were experienced near the basin outlet from previous rainfall, with a new flood peak responding to the rainfall in the upper part of the basin. The monthly peak runoff was observed in the months of April, May and November. The analysis
revealed a linear relationship between rainfall and runoff for both wet and dry seasons. The model was found to be useful in poorly gauged catchments using satellite forcing data and showed the potential to be used not only for the investigation of the catchment scale water balance but also for addressing issues pertaining to sustainability of the resources within the catchment.

1 Introduction

Climatologically most of East Africa is considered as a sub humid landscape that comprises arid and semi-arid regions, grasslands, savannahs, as well as a Mediterranean environment. East African climate is mainly influenced by the seasonal shift of the intertropical convergence zone (ITCZ). However other regional factors that influence the climate are topographical variations, large inland lakes, land cover/land use, as well as the proximity to the Indian Ocean. Oscillations in the ITCZ, shapes two rainy seasons in the equatorial East Africa, one from March to May and the second from October to December (Kaspar et al., 2008). This precipitation pattern can result in floods in this region with impacts on the food and agricultural security, human health, infrastructure, tourism, and other sectors. The rainy season that onsets from October through early December brings devastating floods in Uganda, Kenya, Tanzania, and other countries in East Africa almost every year. This region, surrounding Lake Victoria, is heavily populated with around thirty million people (Osano et al., 2003). These floods are a serious problem in East Africa, particularly in the Lake Victoria Basin, which impacts the livelihood of many people every year. Since the 1950’s East African countries like Kenya, Uganda, and Tanzania showed an increase in population as well as unsustainable development. Due to economic pressure, much of the forest land is converted to agriculture or settlement purposes. The Lake Victoria region experiences rising demands for its depleting water resources.

Hydro-climatology deals with the interactions of climate with surface water. It recognizes that climate is the driving force of the hydrologic cycle. One of the main focuses
of the hydro-climatic study is the interactions between precipitation, evapotranspiration, soil moisture storage, groundwater recharge, and stream flow (Shelton, 2009). The study of the water budget at a given location and time period essentially deals with the components of hydro-climatology. Hydrologic modeling is one of the efficient and valuable approaches for understanding the relationship between climate, hydrologic cycle, and water resources. In East Africa, the current trend and future scenarios of unsustainable water resource utilization demands modeling studies that provide accurate spatial and temporal information on hydrological and climatological variables. The main obstacles for these investigations are the lack of sufficient geospatial data for distributed hydrologic model input and validation. Availability of observed data in regions with sparse ground based networks for hydrologic estimations is the key limitation in hydroclimatologic studies. Hydrologic modeling has been constrained by the difficulty in precisely estimating precipitation, the key forcing factor, over a range of spatial and temporal scales. However, advances in satellite remote sensing data can provide objective estimates on precipitation, evapotranspiration and land surface controlling factors for water budget calculations. The recently available and virtually uninterrupted supply of satellite-based rainfall estimates is becoming a cost-effective source of data for hydro climatologic investigations in many under-gauged regions around the world. The question remains whether with the existing spatial and temporal coverage of satellite precipitation and other estimates, how can we achieve their optimal use to compute a less uncertain water budget?

In this study, Coupled Routing and Excess Storage (CREST) (Wang et al., 2010) a distributed hydrologic model, is used to simulate the spatial and temporal variation of atmospheric, land surface, and subsurface water fluxes and storages. The goal of this paper is to study the hydro-climatology of Nzoia Basin, a sub catchment of the Lake Victoria region using observed and simulated data with particular emphasis on distributed hydrology of the watershed. (Fig. 1). More specifically, the objectives are to 1) quantify the hydrologic cycle of Nzoia Basin at decadal, annual, monthly and daily time scale using in-situ 21-year observational dataset; 2) model the rainfall-runoff rela-
tionship using a distributed hydrological model, calibrated by long-term observations, in terms of predictability at the daily flood scale; 3) investigate the hydrological capability of remote sensing data (preliminary precipitation) in terms of the reconstruction of water cycle components. The use of remotely sensed spatially distributed datasets has made possible the transition from lumped to distributed hydrologic models that accounts for the spatial variability of the model parameters and inputs.

The paper follows with a brief description of the study basin, data, and model in Sect. 2. The hydroclimatology based on observational datasets are discussed in Sect. 3, followed by Sect. 4 with a model set-up, calibration, and verification. The hydrological model reconstruction results are outlined in Sect. 5, and finally summary and discussions are given in Sect. 6.

2 Study area, data and model

2.1 Study area

The study area is the Nzoia River located at latitudes 34°–36° E and longitudes 0°03′–1°15′ N in East Africa. It drains into the Lake Victoria and Nile river basins. Lake Victoria, with an area of 68 600 km², is the second largest freshwater lake in the world (Swenson and Wahr, 2009). Nzoia, a sub-basin of Lake Victoria, is chosen as the study area because of its regional importance as it is a flood-prone basin and also one of the major tributaries to Lake Victoria (Fig. 1). The Nzoia sub-basin covers approximately 12 900 km² of area with an elevation ranging between 1100 to 3000 m. The Nzoia River originates in the southern part of the Mt. Elgon and Western slopes of Cherangani Hills (Li et al., 2009).
2.2 In-situ and remote sensing datasets

2.2.1 Gauged rainfall and discharge data

Daily observed rainfall data are obtained from the Africa Regional Centre for Mapping of Resources for Development (RCMRD) from 1985 to 2006 for the 12 rain gauge stations located within the Nzoia Basin. They are then interpolated to fit the model grid resolution using the Thiessen polygon method (Kopec, 1963). Also obtained are the daily discharge data (in m3/s) at the basin outlet for the same time period.

2.2.2 NASA TMPA

Precipitation is a critical forcing variable to hydrologic models, and therefore accurate measurements of precipitation on a fine space and time scale is very important for simulating land-surface hydrologic processes, and monitoring water resources, especially for semiarid regions (Sorooshian et al., 2005; Gebremichael et al., 2006). For the past decade, there have been several multi-satellite based precipitation retrieval algorithms for operational and research purposes (Hong et al., 2004; Huffman et al., 2007; Joyce et al., 2004; Sorooshian et al., 2000). For this study, we used one of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products, 3B42V6 given its 10+ year data availability. It was used to drive the CREST model to simulate the water budget components such as runoff, evapotranspiration and, change in storage for the study basin. The standard TMPA provides precipitation estimates from multiple satellites at a 3-hourly, 0.25° × 0.25° latitude-longitude resolution covering the globe between the latitude band of 50° N–S (Huffman et al., 2007). This TRMM standard precipitation product has been widely used for hydrological applications such as flood and landslide prediction at the global and regional scope (Su et al., 2008; Hong et al., 2006; Hong et al., 2007; Yong et al., 2010).
2.2.3 Evapo-transpiration

In the model, Potential Evapotranspiration (PET) values from the global dataset based on the Famine Early Warning Systems Network. Further details on these estimates can be found at (http://earlywarning.usgs.gov/Global/product.php?image=pt). The PET are estimates of climate parameter data that is extracted from the Global Data Assimilation System (GDAS) analysis fields.

2.3 The CREST model

A distributed hydrologic model, Coupled Routing and Excess STorage (CREST) (Wang et al., 2010; Khan et al., 2010) is used to simulate the spatiotemporal variation of water fluxes and storages on regular grids. The model accounts for the most important parameters of the water balance component i.e. the infiltration and runoff generation processes. The main CREST components are briefly described as : 1) data flow module based on cell to cell finite elements; 2) the three different layers within the soil profile that affect the maximum storage available in the soil layers. This representation within cell variability in soil moisture storage capacity (via a spatial probability distribution) and within cell routing can be employed for simulations at different spatiotemporal scales 3) coupling between the runoff generation and routing components via feedback mechanisms. This coupling allows for a scalability of the hydrological variables, such as soil moisture, and particularly important for simulations at fine spatial resolution. Further details on CREST model, can be found in Khan et al. (2010) and Wang (2010).

3 Hydro-climatology of Nzoia Basin

3.1 Rainfall

The mean monthly rainfall over Nzoia shows dual peaks over the years which is common to parts of the immediate equatorial zone especially in East Africa (Hulme, 2006).
The first and second maxima occurred in April-May and July-November, respectively. The maximum daily, monthly and yearly rainfall is 38, 10.87 and 5.19 mm/day, respectively (Fig. 2a–c). It is observed that for the given time period of 1985–2006, the basin average rainfall per annum was about 1500 mm. Observations of the rainfall since 1985 do not show any statistically significant trends. It is observed that half of the recorded rainfalls are below 5 mm/d and the rainfall histogram was skewed towards the lower ends (Fig. 3a and b).

3.2 Stream discharge

Discharge varies from low flows of 0.7 m3/s to a high of 600 m3/s. The highest river discharges occurred in the months of May through September while the lowest river discharges occurred in the months of January through March (Fig. 2b). From 1985–2006, the average daily discharge was 134 m3/s (Fig. 2a). The flow duration curve shows the average percentage of time that specific daily flows (Fig. 4a) are equaled or exceeded at Nzoia. The discharge histogram is skewed towards the lower values and more than half of the recorded daily discharges are less than 120 m3/s (Fig. 4b).

3.3 Return periods of rainfall and discharge

The annual peak discharge and precipitation for the given time period are shown in Fig. 5. The calculated return periods for both the discharge and rainfall are given in Table 1. The peak discharges of 1985, 1988, 1999, and 2006 were all above the 5-year flow while 1985 and 1999 recorded discharges of 10-year return periods. In 1985, the recorded peak discharge was of the 100-year return period.

3.4 Annual mean discharge

The discharge time series provide information on the year-to-year variations of both low and peak discharges. Figure 6a shows the annual mean discharge for Nzoia River. The lowest annual discharge is 65.90 m3/s in 1986 and the highest is 232.06 m3/s in 1994. The other wet years are 1998 and 2006 and the dry years are 1987 and 2002. Overall we can observe a slight increasing trend in annual mean discharge. Seasonal cycles included in annual discharge are noticeable with a greater variability of monthly mean stream flow as shown in Fig. 6b. The maximum monthly discharge is 420.96 m3/s for May 1985. All the wet years of 1994, 1998 and 2006 are marked by high monthly discharges. The dry years of 1986, 1987, and 2002 are not the result of a single dry month but due to continuous low monthly discharges throughout the whole year (Fig. 6b).

3.5 Decadal monthly trend

The observed data are also analyzed for any trends over the past two decades: 1985–1994 (first decade) and 1995–2004 (second decade). Overall there is some decrease (−4.2%) in rainfall in the second decade compared to the first. Similarly there was a marginal increase (+2%) in discharge (Table 2, Fig. 7a and b).

However, there is a more pronounced monthly variation both in rainfall and discharge. A maximum decrease in rainfall was recorded for the month of February (−55%) whereas December witnessed a maximum increase (+32%). Similarly, there is a maximum drop in stream discharge in the months of February and May (−13%) while a surge of +44% is observed in the month of January (Table 2).

4 Hydrologic model setup, calibration, simulation, and verification

A moderate resolution CREST model at a 30 arcsec resolution is implemented for the Nzoia Basin to retrospectively simulate the main components of water cycles with both
in-situ and remote sensing data sets. The model is implemented over the Nzoia Basin using digital elevation data to generate flow direction, flow accumulation, and contributing basin area that are required as basic inputs to run the CREST model. The local drainage direction and accumulation are derived from the Digital Elevation processed from the Model Shuttle Radar Topography Mission (SRTM) (Rabus et al., 2003). The primary forcing datasets enabling the development of a distributed hydrological model using the long term rain gauge and observed streamflow data provided by the local authorities previously discussed in Sect. 2.2. The CREST model is calibrated at the Nzoia Basin outlet (Fig. 1) for the given time period of 1985–1998. A spin up period of one year was assigned to produce reasonably realistic climate states.

The model utilizes global optimization approach to capture the parameter interactions. An auto-calibration technique based on the Adaptive Random Search (ARS) method (Brooks, 1958) was used to calibrate the CREST model. The ARS method is considered adaptive in the sense that it uses information gathered during previous iterations to decide how the simulation effort is expended in the current iteration. The two most commonly used indicators for the model calibration in order to get the best match of model-simulated streamflow with observations are the Nash-Sutcliffe Coefficient of Efficiency (NSCE) (Nash and Sutcliffe, 1970) and relative bias ratio (Bias). Therefore, these are used as objective functions for the automatic calibration. The ideal value for NSCE is 1 and Bias is 0%. Precipitation and streamflow time series corresponding to this optimized parameter combination during the calibration period are shown in Fig. 8a. CREST calibration with the optimized parameter combination yielded NSCE = 0.87 and Bias = –0.23% as the final result (Fig. 8a).

The performance of CREST in discharge simulation at the drainage outlet was validated. The validation of the hydrological model was performed for the period 1999–2004. The simulation quality during the validation period is comparable, even with a decrease in model efficiency. One reason for the noise in the simulation might be due to the increase in human activities in the catchment area during the recent years. With this optimized parameter combination and model status at the last day from cal-
5 Hydrological model reconstruction results

Basin-based water balance modeling studies are important in both hydrology and climate research since they provide information on the hydrological cycle and the amount of renewable water available for ecosystems at various land-atmosphere interaction scales ranging, in general, from daily, seasonal, annual, to decadal. Water balance for watersheds, lakes or over a unit land surface area is normally expressed as \(P + R + ET = \Delta S/\Delta t \). Where \(P \) is precipitation, \(R \) surface runoff, ET is evapotranspiration and \(\Delta S/\Delta t \) change in storage, all in per time (L/T) (Thornthwaite, 1948; Vörösmarty et al., 1989; Willmott et al., 1985). In this equation, precipitation is the important climate variable for accurate water budget estimation and measured directly on a regular basis. CREST model simulates the spatio-temporal variation of water fluxes and storages on a regular grid with the grid cell resolution being user-defined. The model can output many variables as a raster grid for any time period. The hydrologic variables were generated from CREST retrospective simulation from 1999 to 2003 using TRMM 3B42V6. These four years were selected to minimize the model run time. Since simulation of the model involves thousands of iterations, model run time in particular is a critical factor to complete a simulation. Water balance basin average calculations were made at daily
and long-term mean monthly scale and are discussed hereunder.

5.1 Runoff

The results from the climatological water balance are shown in Fig. 9. The basin average monthly analysis shows that the model produces nearly the same basin-wide runoff. Model runoff is compared to the river discharge gauged at the catchment outlets of the basin. The location of the discharge measuring station is illustrated in Fig. 1. The runoff estimates are expressed in mm/month, to allow inspection of the relative contribution of the catchment. The overall comparison of runoff estimates are reasonably well matched in magnitude and time evolution (Fig. 9). The model slightly underestimates R for the months of June, July, August and September. The observed values still fall under the ±1 standard deviation (std dev) of monthly mean values. It is to be noted that there is fluctuation of observed streamflow which is an indication of water management practices on the Nzoia River; this is also depicted in Fig. 8b.

5.2 Precipitation

We utilized the TMPA 3B42V6 dataset as a forcing parameter to characterize the hydrologic variables at the study basin. As expected, 3B42V6 captures the seasonality of precipitation over the Nzoia Basin. The monthly distribution of 3B42V6 precipitation data also shows two rainy seasons that are comparable with the observed precipitation shown in Fig. 2. Figure 11 shows the spatial distribution of rainfall over the catchment. The TMPA product showed fairly good agreement throughout the year; similar results are reported in Li et al. (2009). The 3B42V6 estimates fall under the ±1 std dev of monthly mean values throughout the year (Fig. 9).

5.3 Evapotranspiration

Estimation of evapotranspiration, a key hydrologic variable provides better understanding of the relationships between water balance and climate. In arid and semi-arid
biomes, around 90% or more of the annual precipitation can be evapotranspired, and thus ET determines the freshwater recharge and discharge from aquifers in these environments (Wilcox et al., 2003). Moreover, it is projected that climate change will influence the global water cycle and intensify ET globally (Huntington, 2006; Meehl et al., 2007) consequently impacting the scarce water resources. Therefore, estimation of average monthly and annual evapotranspiration is important. Figure 9 shows the simulated evapotranspiration for the time period. Generally in the drier months, evapotranspiration equals rainfall amounts. The evapotranspiration, however, does not vary as much as rainfall does in a given year.

6 Summary and discussion

The countries of Eastern Africa are prone to extreme climatic events such as droughts and floods. These events have had severe, negative socio-economic impacts on most of the countries, causing widespread famine and economic hardships in the sub region (Li et al., 2009; Funk et al., 2005). According to the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), the annual precipitation is likely to increase in East Africa and Kenya. Changes are expected in daily, seasonal, inter-annual, and decadal variability. Most of the hydro-climatic studies on East African countries in the past were based mainly on global and regional climate models (Hulme, 2006; Camberlin and Philippon, 2002). In this study, we used observed data from 1985–2006, for the hydroclimatology of Nzoia Basin by studying 1) rainfall and stream discharge patterns, 2) return periods of rainfall and discharge, 3) annual mean discharge and decadal monthly trends of both rainfall and discharge. In addition, a distributed hydrologic model driven by satellite remote sensing data is used to study the water balance of the sub catchment. Runoff and precipitation observation have been used to evaluate the hydrologic model results.

The observed record at Nzoia showed that for the 1985–2006 time period the basin received quite consistently 2-, 5- and 10-years rainfall in totality for the past 21 years
The second decade (1995–2004) however, received less 5-year and 10-year equivalent rainfalls compared to the first decade (1985–1994). The discharge data showed that the 2-years returned period equivalent discharge is observed more frequently in the second decade than in the first decade. There is only a marginal increase in annual mean discharge for the last 21 years. The 2-, 5- and 10-years peak discharges, if analyzed more closely, for the entire study period shows that more years since the mid 1990’s have high peak discharges even with relatively less precipitation. This might have been the effect of changing land-use and land cover types or increased channelization of the Nzoia Basin over time.

The discharge data for the study period showed that the basin is dry and arid with no sustained base flow. The short spell of high discharge shows the rain caused flooding in the basin. With a decrease in rainfall, the primary input flux into the Nzoia Basin, the water budget situation might deteriorate over the coming years. Noticeable variations in monthly average rainfall and discharge were observed for the two decades (1985–1994 and 1995–2004). The rainfall fluctuated from as low as 55% (in February) to as high as 32% (in December) in drier months. Similarly, there are decreases in February and May monthly average discharge by 13% while January saw a surge of 44%. But overall, there is only a very slight increase (2%) in annual mean discharge suggesting an insignificant imbalance in water budget in the basin during the study period.

The study utilizes quasi-global satellite precipitation and other remote sensing data products. This helps to understand the utility of the remotely sensed data for hydroclimatology studies at a sub-catchment with sparse ground observations. Simulation of the key hydrological processes and their interconnection with climate and basin characteristics is a critical step in estimating catchment water balance. Therefore, a distributed hydrologic model (CREST) is implemented to simulate hydrological states and flux variables such as runoff, ET, precipitation and soil moisture at a spatial resolution of 30 arcsec at 3 hourly time steps. The CREST model was forced by satellite-based precipitation and evapotranspiration estimates, rain gauge observations, and other remote sensing products. Observations on runoff and precipitation have been used to
evaluate the model results at the sub-catchment level. TMPA 3B42V6 showed good agreement with gauge observations (Fig. 9).

Spatial distribution and time series of CREST modeling results for precipitation (\(P\)), evapotranspiration (ET), runoff (\(R\)), and \(dS/dt\) are given in Figs. 10 and 11. In general, the model reproduces \(P\), ET, and \(dS/dt\) fairly well. Considerable agreement was observed between the monthly model runoff estimates and gauge observations reported for the Nzoia River (Fig. 9). Runoff values respond to precipitation events occurring across the catchment during the wet season from March to early June. The hydrologic model reasonably captured the soil moisture storage variability. An important advantage of spatially distributed hydrologic model, such as CREST, is that it not only provides estimates of hydrological variables at the basin outlet, but also at any location as represented by a cell or grid within the given basin (Fig. 10). These spatially distributed model inputs, states, and outputs, are useful for visualizing the hydrologic behavior of a basin. These results reveal that relatively high flows were being experienced near the basin outlet from previous rainfall, with a new flood peak responding to the rainfall in the upper part of the basin.

Comparison of the model outputs such as evapotranspiration and soil moisture estimates against field measurements can help evaluate the model performance. The model developed from this study can be applied to poorly gauged catchments using satellite forcing data and also be used to investigate the catchment scale water balance. Implementing the CREST model resulted in spatiotemporally distributed hydrological variables that can be utilized in addressing issues pertaining to sustainability of the resources within the catchment.

Acknowledgements. This work was supported by NASA Headquarters under the NASA Earth Science Fellowship Program- Grant NNX08AX63H and NASA Applied Sciences SERVIR Africa project (www.servir.net). The authors also thank the RCMRD for providing gauged rainfall and streamflow observations over the Nzoia Basin. We also appreciate the efforts of three anonymous reviewers for critical comments and constructive suggestions.
References

Swenson, S. and Wahr, J.: Monitoring the water balance of Lake Victoria, East Africa, from 4802
Table 1. Discharge and rainfall return periods.

<table>
<thead>
<tr>
<th>Return periods (y)</th>
<th>Discharge (m3/s)</th>
<th>Rainfall (mm/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>370.03</td>
<td>25.68</td>
</tr>
<tr>
<td>5</td>
<td>442.81</td>
<td>30.84</td>
</tr>
<tr>
<td>10</td>
<td>486.37</td>
<td>33.95</td>
</tr>
<tr>
<td>20</td>
<td>525.52</td>
<td>36.74</td>
</tr>
<tr>
<td>50</td>
<td>573.41</td>
<td>40.16</td>
</tr>
<tr>
<td>80</td>
<td>591.49</td>
<td>41.45</td>
</tr>
<tr>
<td>100</td>
<td>607.65</td>
<td>42.61</td>
</tr>
<tr>
<td>200</td>
<td>640.93</td>
<td>45.00</td>
</tr>
<tr>
<td>500</td>
<td>683.56</td>
<td>48.05</td>
</tr>
</tbody>
</table>
Table 2. Seasonal variation of rainfall and discharge.

<table>
<thead>
<tr>
<th>Decades</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1995–2004</td>
<td>2.20</td>
<td>1.20</td>
<td>4.07</td>
<td>7.23</td>
<td>5.96</td>
<td>4.37</td>
<td>3.93</td>
<td>4.55</td>
<td>4.11</td>
<td>4.65</td>
<td>4.31</td>
<td>2.05</td>
</tr>
<tr>
<td>Change</td>
<td>0.50</td>
<td>−1.49</td>
<td>−0.41</td>
<td>−0.44</td>
<td>−1.74</td>
<td>−0.13</td>
<td>−0.54</td>
<td>−0.86</td>
<td>0.04</td>
<td>0.40</td>
<td>0.08</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td>30%</td>
<td>−55%</td>
<td>−9%</td>
<td>−6%</td>
<td>−23%</td>
<td>−3%</td>
<td>−12%</td>
<td>−16%</td>
<td>1%</td>
<td>9%</td>
<td>2%</td>
<td>32%</td>
<td>−4%</td>
</tr>
<tr>
<td>Discharge</td>
<td>1985–1994</td>
<td>57.53</td>
<td>51.39</td>
<td>64.13</td>
<td>143.86</td>
<td>219.99</td>
<td>160.38</td>
<td>167.40</td>
<td>182.39</td>
<td>165.81</td>
<td>142.70</td>
<td>131.12</td>
<td>85.06</td>
</tr>
<tr>
<td></td>
<td>1995–2004</td>
<td>82.74</td>
<td>44.66</td>
<td>59.68</td>
<td>128.93</td>
<td>191.47</td>
<td>150.56</td>
<td>153.79</td>
<td>164.76</td>
<td>155.48</td>
<td>140.87</td>
<td>150.09</td>
<td>115.72</td>
</tr>
<tr>
<td>Change</td>
<td>25.21</td>
<td>−6.73</td>
<td>−4.45</td>
<td>−14.93</td>
<td>−28.53</td>
<td>−9.82</td>
<td>−13.60</td>
<td>−17.63</td>
<td>−10.33</td>
<td>−1.83</td>
<td>18.97</td>
<td>30.67</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td>44%</td>
<td>−13%</td>
<td>−7%</td>
<td>−10%</td>
<td>−13%</td>
<td>−6%</td>
<td>−8%</td>
<td>−10%</td>
<td>−6%</td>
<td>−1%</td>
<td>14%</td>
<td>36%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Fig. 1. Map of Nzoia River Basin in Lake Victoria region, East Africa.
Fig. 2. Basin average rainfall and discharge time series at (a) daily (b) monthly and (c) yearly time step at Nzoia.
Fig. 3. Observed basin average rainfall (mm/d) for 1985–2006 (a) cumulative distribution plot and (b) histogram.
Fig. 4. Observed daily discharge (m3/s) for 1985–2006 for Nzoia River. (a) Flow duration curve (b) histogram.
Fig. 5. Annual peak rainfall and discharge for 1985–2006 with the 2-, 5- and 10-year return period.
Fig. 6. Mean discharges at Nzoia 1985–2006: (a) Annual mean and (b) monthly mean.
Fig. 7. Decadal trend in the Nzoia Basin (a) rainfall (mm/d) and (b) discharge (m3/s).
Fig. 8. Precipitation observed and simulated runoffs for (a) calibration period (1985–1998), (b) validation period (1999–2004), (c) validation with the TRMMV6 from (1999–2003).
Fig. 9. Monthly model versus observed Runoff (R) and model Precipitation (P), Evapotranspiration (ET) (mean annual cycle 1996–2006). Error bars showing the ±1 std dev of monthly mean values.
Fig. 10. Spatially distributed average runoff in (a) wet season MAMJ (from March to June), (b) dry season NDJF (from November to February).
Fig. 11. Spatially distributed precipitation, and evapotranspiration $dS/d\Delta S$ (change in storage) in (a) wet season MAMJ (from March to June), (b) dry season NDJF (from November to February).