

Hands-on Session: Calibrate the CREST Model

Xianwu Xue April 3rd 2012

The UNIVERSITY of OKLAHOMA

Background

- Hydrologic models often contain parameters that cannot be measured directly but which can only be inferred by a trialand-error (calibration) process that adjusts the parameter values to closely match the input-output behavior of the model to the real system it represents.
- Traditional calibration procedures, which involve "manual" adjustment of the parameter values, are labor-intensive, and their success is strongly dependent on the experience of the modeler.
- Automatic methods for model calibration, which seek to take advantage of the speed and power of computers while being objective and relatively easy to implement

Vrugt, J. A., H. V. Gupta, W. Bouten, et al. (2003), A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resources Research, 39.

Question!!!

• Did you calibrate a model?

• How complex the model? (Number Parameters/Variables...)

• Manually or Automatically?

Table of Contents

You need streamflow observations for the model calibration.

Manual Calibration

- Automatic Calibration
 - SCE-UA (Shuffled Complex Evolution The University of Arizona)

OPS Folder	Date	₩angchu
	20010101	27
	20010102	27
	20010103	26.944
 Wangchu Ohs csv (Using csv format by Excel) 	20010104	25, 913
Valigena_Obstesv (Osing tesv for inde by Exect)	20010106	25,106
	20010107	25.05
	20010108	25.055
	20010109	24.477
· Ctation Nome + // Obs and	20010110	24.67
 Station Name + "_UDS.CSV" 	20010111	25.05
—	20010112	25.45
	20010113	24.988
	20010114	24.85
	20010115	24.734
 Date Column depends on the run ontions 	20010113	24.011
Date column acpentas on the ran options	20010118	23.5
	20010119	23.527
tor example:	20010120	23.781
	20010121	23.78
Verse (Manthe Develleum (Minute (Ceeend	20010122	23.766
Year + ivionth + Day + Hour + iviinute + Second	20010123	23.535
	20010124	24.217
	20010125	24
	20010126	24.51
	20010127	24.706
Runoff Column "m ³ /s"	20010120	23, 944
Runon Column. In 75	20010120	24.615
	20010131	25.125
	20010201	25.159
	20010202	25.32
	20010203	24.393
	20010204	23
	20010205	21.855
	20010206	21.479
	20010207	22.096
	20010208	22.4(9
Hydrometeorology and Remute Sensing Laboratory (hydro.ou	20010203	23. 213

Try the Example Basin using Manual Calibration

- Let's modify one of the parameter value to see how the results change, use the table here as the range of the parameters:
 - The NSCE increased or decreased?
 - Try others
 - Do you got a good results?
 - How long do you use?

Parameter	Min	Max
RainFact	0.5	1.2
Ksat	18	313.92
WM	0.1	232.5
В	0.05	1.5
IM	0	0.2
KE	0.1	1.5
coeM	1	150
coeR	1	3
coeS	0.001	1
KS	0	1
KI	0	1

How do you feel?

- Tired?
- Exhausted?
- Despaired?

Do you want to calibrate the model manually?

SCE-UA

shuffled complex evolution (SCE) method

Duan, Q. Y., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global minimization, Journal Of Optimization Theory And Applications, 76(3), 501-521.

Calibrations.txt

	<u> </u>	40		4,0,,,,	1,1,1,1,5,0,		, ^{6,0} , , , , , , , ,	
1	###################	########	******	#########	#######	#######	+########	*###########
2	# CREST Calibration	s File (V	/ersion :	more than	2.0)			
3	****	########	*#######	##########	#######	#######	+########	*###########
4	iseed =		-3					
5	maxn =		100	00				
6	kstop =		10					
7	pcento =		0.0	001				
8	ngs =		2					
9	*****	########	*****	##########	#######	#######	+########	*###########
10	NCalibStations =		1					
11	IsColRow =		no	# yes:	use Col	& Row;	No: Lan	& Lati
12	*****	########	*****	##########	######	#######	+########	*****
13	[Station 1 Begin]							
14	Name_1	=	W	angchu				
15	Value_1	=	1					
16	Long_1 = 89.53	0485						
17	Lati_1 = 27.10	8927						
18	RainFact_1	= 0.5	0.95	1.2				
19	Ksat_1	= 18	23 3	13.92				
20	WM_1	= 0.1	165.208	27244536	232.5			
21	B_1	= 0.05	0.25	1.5				
22	IM_1	= 0.0	0.05	0.2				
23	KE_1	= 0.1	0.95	1.5				
24	coeM_1	= 1.0	90.0	150				
25	expM_1	= 0.1	0.95	2				
26	coeR_1	= 1.0	2.00	3.0				
27	coeS_1	= 0.001	0.95	1				
28	KS_1	= 0.0	0.50	1.0		# Min	Value	Max
29	KI_1	= 0.0	0.50	1.0				
30	[Station 1 End]							

Calibration Parameters

- **iseed** = initial random seed
- maxn = maximum number of trials allowed before optimization is terminated
- kstop = number of shuffling loops in which the criterion value must change by "pecnto" before optimization is terminated
- pecnto = percentage by which the criterion value must change in "kstop" shuffling loops
- **ngs** = number of complexes in a sample population

Parameters

Symbol	Description
Ksat	the Soil saturate hydraulic conductivity
RainFact	the multiplier on the precipitation field
WM	The Mean Water Capacity
В	the exponent of the variable infiltration curve
IM	Impervious area ratio
KE	The factor to convert the PET to local actual
coeM	overland runoff velocity coefficient
expM	overland flow speed exponent
coeR	multiplier used to convert overland flow speed to channel flow speed
coeS	multiplier used to convert overland flow speed to interflow flow speed
KS	Overland reservoir Discharge Parameter
KI	Interflow Reservoir Discharge Parameter

01

Evaluation indices

• Nash-Sutcliffe Coefficient of Efficiency

 Relative Bias (%) was used to assess the systematic bias of runoff

NSCE =
$$1 - \frac{\sum_{i=1}^{n} \left(R_{obs,i} - R_{sim,i} \right)^{2}}{\sum_{i=1}^{n} \left(R_{obs,i} - \overline{R_{obs}} \right)^{2}}$$

• The correlation coefficient (CC) is used to assess the agreement $CC = \frac{\sum_{i=1}^{n} (R_{obs,i} - R_{obs}) (R_{sim,i} - \overline{R_{sim}})}{\sqrt{\sum_{i=1}^{n} (R_{obs,i} - \overline{R_{obs}})^{2} \sum_{i=1}^{n} (R_{sim,i} - \overline{R_{sim}})^{2}}}$ between simulated runoff and observed runoff

Validation of the Results

	Calibration	Validation
NSCE	0.75	(2002)
Bias(%)	-4.76	2.78
CC	0.87	0.86

| HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

NAS

- Calibration Period: 2001.1.1-2001.12.31
- Validation Period: 2002.1.1-2002.12.31

Let's try the automatic calibration!

First Step: Modify the Parameter File

Modify the KS value to 1.0 in Parameters.txt and then save the

						TIIE			
16	BType	=	Uniform #	<u>'' I I I I I</u>	16	ВТуре	=	Uniform #	
17	В	=	0.780130781396043	#0.2	17	В	=	0.780130781396043	#0.25
18	************	*****	****************	*****	18	***********	*****	****************	*******************
19	IMType	=	Uniform #		19	IMType	=	Uniform #	
20	IM	=	0.199996144773270	#1.0	20	IM	=	0.199996144773270	#1.0
21	************	*****	*****************	*****	21	**********	*****	*****************	********************
22	KETvpe	=	Uniform #		22	KEType	=	Uniform #	
23	KE	=	0.100087606044631	#0.8·	23	KE	=	0.100087606044631	#0.845182
24	***********	******	****************	*****	24	***********	*****	****************	********************
25	coeMTune	=	Uniform #Overland	flow	25	coeMType	=	Uniform #Overland	flow speed multiplier
26	coeM	=	95 991845343942302	#58	26	coeM	=	95.991845343942302	#58.89378
27	**********	******	****************	++++++	27	************	*****	****************	********************
20	avoMTupe		Uniform #		28	expMType	=	Uniform #	
20	expMI ype	_	0 5		29	expM	=	0.5	
29	expr				30	*****	*****	*****************	**********************
30	**********	*****	The if a new #	*****	31	coeRTvpe	=	Uniform #	
31	соектуре	-	Uniform #	#0 T	32	coeR	=	1.260870803674761	#0.728891
32	соек		1.2608/08036/4/61	#0.7.	33	************	*****	*****************	**********************
33	*****	*****	****	****	34	coeSType	=	Uniform #	
34	coeSType	=	Uniform #		25	coes	=	0 336019367022371	#0 627904
35	coeS	=	0.336019367022371	#0.6	20	*****	*****	***************	*******************
36	**********	*****	****************	*****	20	VCT.mo	- -	Iniform #	**********************
37	KSType	=	Uniform #		37	K51ype	_		
38	KS	=	0.822762410971760	#0.4	38	KD	_	1.0 #0.414064	
39	**********	#####	***************	****	39	****	*****	****	******
40	KIType	=	Uniform #		40	кітуре	=	Uniform #	
41	KI	=	0.188793914515398	#0	41	KI	=	0.188793914515398	#0.215441
42	***********	*****	****************	*****	42	***********	*****	*****************	********************

	noarrootacrom	-	-				
11	IsColRow	=	no	# yes:	use Co	1& Row;	No:
12	**********	************	********	######	######	######	#####
13	[Station 1 Beg	yin]					
14	Name_1	=	Wang	chu			
15	Value_1	=	1				
16	Long_1 =	89.530485	_				
17	Lati_1 =	27.108927					
18	#RainFact_1	= 0.5	0.95 1.	2			
19	#Ksat_1	= 18	23 313.	92			
20	#WM_1	= 0.1	165.208272	44536	232.5		
21	#B_1	= 0.05	5 0.25	1.5			
22	#IM_1	= 0.0	0.05 0.	2			
23	#KE_1	= 0.1	0.95 1.	5			
24	#coeM_1	= 1.0	90.0 15	0			
25	#expM_1	= 0.1	0.95 2				
26	#coeR_1	= 1.0	2.00 3.	0			
27	#coeS_1	= 0.001	0.95 1				
28	KS_1	= 0.0	0.50 1.	0		# Min	Val
29	#KI_1	= 0.0	0.50 1.	0			
30	[Station 1 End	3]					

HyDrometeorology and **R**em**O**te **S**ensing **Lab**oratory (hydro.ou.edu)

NAS

Third Step: Modify the Project File

Select "cali_SCEUA" in "Wangchu_CREST_V6_Daily.Project" file and then **save** the file

4	Version	=	2.0							
5	***********	######	******	###	**************	*****	***********	########		
6	# MODEL AREA			4	Version	=	2.0			
7	***********	######	******	5	**************	*****	***********	*******	****	**********************
8	NCols	=	81	6	# MODEL AREA					
9	NRows	=	92	7	**************	*****	***********	*******	****	**********************
10	xllCorner	=	89.091	8	NCols	=	81	# Number	of:	columns
11	yllCorner	=	27.099	e	NRows	=	92	# Number	of:	rows
12	CellSize	=	0.0083	0	xllCorner	=	89.0916666666	557		
13	NODATA_value	=	-9999.	1	yllCorner	=	27.09999999999	996		
14	***********	*****	******	2	CellSize	=	0.008333333333	33333	ŧ	Grid resolution in m
15	<pre># MODEL Run Time</pre>	Inform	nation	з	NODATA_value	=	-9999.			
16	***********	*****	*******	4	*****	*****	***********	*******	****	***********************
17	TimeMark	=	d #y(y	75	# MODEL Run Time	Informa	ation			
18	TimeStep	=	1	6	************	######	***********	*******	****	***********************
19	StartDate	=	200101	7	TimeMark	=	d #y(year);m(m	nonth);d((day)	;h(hour);u(minute);s(second)
2.0	LoadState	=	no	8	TimeStep	=	1			
21	WarmupDate	=	200101	9	StartDate	=	20010101			
22	EndDate	=	200112	0	LoadState	=	no			
23	SaveState	=	no	1	WarmupDate	=	20010101			
24	***********	######	******	2	EndDate	=	20011231			
25	# MODEL Director	Y		з	SaveState	=	no			
26	***********	######	******	4	************	*****	***********	******	****	***********************
27	RunStyle	=	simu	5	# MODEL Directory					
28	***********	######	******	6	************	*****	***********	******	****	***********************
29	BasicFormat	=	asc #a	7	RunStyle	=	cali_SCEUA	# simu,	cali	i_SCEUA, RealTime
30	BasicPath	=	".\Bas	8	***********	*****	**********	******	****	**********************
31	***********	######	******	9	BasicFormat	=	asc #asc,txt,b	oiffit, d	bif,	ASBIMO, BIBIMO, TRMMRT, TRMMV6, NMQB
6				0	BasicPath	=	".\Basics\"			
N			motor	1	************	#####	***********	*******	****	***********************
			песес	0	BananFormat	_				

Final Step: Calibrate the model

C:\Windows\system32\cmd.exe
356 2001-12-22 357 2001-12-23 358 2001-12-24
359 2001-12-25 360 2001-12-26 361 2001-12-27
362 2001-12-28 363 2001-12-29 364 2001-12-30
365 2001-12-31 The results of the Outlet is:
NSCE: 0.74946393 Bias(%): -4.76486689 CC: 0.86970468
Run end date and time (yyyy/mm/dd hh:mm:ss): 2012/04/03 6:58:12 Elapsed run time: 55.817 Seconds
Project: Wangchu_CREST_V6_Daily is finished!
E:\XXW_CREST_Workshop\PPTs\Day Two PM Calibration\Wangchu_CREST_V6_Daily_AutoCa libration>pause Press any key to continue

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

NAS

Take Exercises

• Try the manual calibration and automatic calibration using the example basin

• If you have other questions, please feel free to ask me

Thank you for your attention!

